
S60 Module Reference
Release 2.0.0 final

09 Feb 2010

Nokia

This is Python(R) for S60 version 2.0.0 final created by Nokia Corporation.

Copyright c© 2004 - 2009 Nokia Corporation.

The original software, including modifications of Nokia Corporation therein, is licensed under the applicable
license(s) for Python 2.5.4, unless specially indicated otherwise in the relevant source code file.

You can view the entire copyright information from here pys60 copyright info.txt

pys60unhbox voidb@x penalty @M hskip z@skip global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore discretionary {-}{}{}penalty @M hskip z@skip copyrightunhbox voidb@x penalty @M hskip z@skip global let OT1	extunderscore unhbox voidb@x kern .06emvbox {hrule width.3em}OT1	extunderscore discretionary {-}{}{}penalty @M hskip z@skip info.txt

Abstract

This document is for Python for S60 Platform (Python for S60), which simplifies application development and
provides a scripting solution for the Symbian C++ APIs.

CONTENTS

1 Getting Started 3
1.1 Installing Python runtime and its dependencies . 3
1.2 Packaging a Sample Application . 4

2 Operating System Services and Information 5
2.1 e32 — A Symbian OS related services package . 5
2.2 sysinfo — Access to system information . 7

3 User Interface and Graphics 9
3.1 appuifw — Interface to the S60 GUI framework . 9
3.2 globalui — Interface to the S60 global UI notifiers . 26
3.3 graphics — A graphics related services package . 27
3.4 camera — Interface for taking photographs and video recording 33
3.5 keycapture — Interface for global capturing of key events. 35
3.6 topwindow — Interface for creating windows that are shown on top of other applications. . . . 36
3.7 gles — Bindings to OpenGL ES . 38
3.8 glcanvas — UI Control for Displaying OpenGL ES Graphics 45
3.9 sensor — Module to access the device sensors. 46

4 Audio and Communication Services 59
4.1 audio — An audio related services package . 59
4.2 telephone — Telephone services . 61
4.3 messaging — A messaging services package . 62
4.4 inbox — Interface to device inbox . 63
4.5 location — GSM location information . 64
4.6 positioning — Simplified interface to the position information 65
4.7 btsocket — Provides Bluetooth (BT) support . 67

5 Data Management 71
5.1 contacts — A contacts related services package . 71
5.2 e32calendar — Access to calendar related services . 76
5.3 e32db — Interface to the Symbian native DB . 80
5.4 e32dbm — DBM implemented using the Symbian native DBMS 82
5.5 logs — Module to access the phone logs. 85
5.6 Acronyms and Abbreviations . 87

6 scriptext - Platform Service API Usage from Python runtime 89
6.1 Overview of scriptext usage . 89
6.2 Application Manager . 96
6.3 Calendar . 105
6.4 Contacts . 128
6.5 Landmarks . 150
6.6 Location . 173
6.7 Logging . 189

i

6.8 Messaging . 201
6.9 Media Management . 217
6.10 Sensors . 222
6.11 Sys Info . 235
6.12 Appendix . 250

7 Module Repository 253

8 Extending and Embedding PyS60 257
8.1 Extending PyS60 . 257
8.2 Embedding PyS60 . 261
8.3 Porting 1.4.x to 1.9.x . 262

9 Terms and Abbreviations 265

A Known Issues 269

B Reporting Bugs 271

Module Index 273

Index 275

ii

Contents 1

2

CHAPTER

ONE

Getting Started

Thank you for installing Python for S60 package.
Python for S60 is a powerful scripting language with an extensive standard library and easy-to-use APIs for S60
phone features, based on Python 2.5.4.

1.1 Installing Python runtime and its dependencies

Python runtime and other libraries are available in the folder PyS60Dependencies under the installation folder.

Python 2.0.0.sis - Python runtime

Runtime dependent package:
- pips.sis - OpenC PIPS library

Optional packages/libraries:
- stdioserver.sis - stdioserver to run python scripts packaged with console profile.
- ssl.sis - SSL library if you need SSL support in socket module.

Different variants of PythonScriptShell packages:
- PythonScriptShell 2.0.0 high capas.sis - ScriptShell with high capabilities (Self-signed + Location +
SwEvent + WriteDeviceData + ReadDeviceData)
- PythonScriptShell 2.0.0 3 2.sis - ScriptShell with Self-signed + Location capability
- PythonScriptShell 2.0.0 3 0.sis - ScriptShell with Self-signed capability set
- PythonScriptShell 2.0.0 unsigned devcert.sis - ScriptShell with Developer certificate capabilities

- Python 2.0.0 unsigned.sis – Unsigned Python runtime component

3

1.2 Packaging a Sample Application

This section describes how to create a sis file from a Python script.

1.2.1 On a Windows host machine

The following steps provide the procedure for writing and packaging a helloworld script.

• Create a ”helloworld” script with the filename ”helloworld.py” containing print "Hello World!"
code snippet.

• Click Start - Programs - PythonForS60 2.0.0 ¿ PyS60 Application Packager, the PyS60 application
packager dialog box opens.

• Select the Scriptfile radio button and then, click the Browse button to select the helloworld.py script from
the file Open dialog.

• Click the Create button to create the sis file with the current settings.

• Install the sis file helloworld v1 0 0.sis created in the source directory of ”helloworld.py” file.

1.2.2 On a Linux or Mac host machine

The following steps provide the procedure for writing and packaging a helloworld script.

• Create a ”helloworld” script with the filename ”helloworld.py” containing print "Hello World!"
code snippet.

• Using a command prompt, enter the directory which contains the ensymble.py and copy the
”helloworld.py” file here.

• Execute the command "python ensymble.py py2sis helloworld.py".

• The sis file would be generated in the current directory. Install this on an S60 device.

• Execute "python ensymble.py py2sis --help", for more info on py2sis options.

4 Chapter 1. Getting Started

CHAPTER

TWO

Operating System Services and
Information

2.1 e32 — A Symbian OS related services package

The e32 module offers Symbian OS related utilities that are not related to the UI and are not provided by the
standard Python library modules.

2.1.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the e32 module:

ao_yield()
Yields to the active scheduler to have ready active objects with priority above normal scheduled for
running. This has the effect of flushing the eventual pending UI events. Note that the UI callback code may
be run in the context of the thread that performs an ao_yield. For information on active scheduler, see
S60 SDK documentation [4].

ao_sleep(interval [, callback])
Sleeps for the given interval without blocking the active scheduler. When the optional callback is given,
the call to ao_sleep returns immediately and the callback gets called after interval. See also Section
2.1.3, Ao timer Type.

ao_callgate(wrapped callable)
Wraps wrapped callable into returned callable object callgate that can be called in any thread. As a result
of a call to callgate, wrapped callable gets called in the context of the thread that originally created the
callgate. Arguments can be given to the call. This is actually a simple wrapping of the Symbian active
object facility.

drive_list()
Returns a list of currently visible drives as a list of Unicode strings ’<driveletter>:’

file_copy(target name, source name)
Copies the file source name to target name. The names must be complete paths.

in_emulator()
Returns True if running in an emulator, or False if running on a device.

set_home_time(time)
Set the device’s time to time (see Section ??).

pys60_version
A string containing the version number of the Python for S60 and some additional information.

Example:

5

>>> import e32
>>> e32.pys60_version
’1.9.3 svn2793’
>>>

pys60_version_info
A tuple containing the five components of the Python for S60 version number: major, minor, micro, release
tag, and serial. All values except release level are integers; the release tag is a string. A value other than
’final’ for the release tag signifies a development release. The pys60_version_info value
corresponding to the Python for S60 version 1.9.3 is (1, 9, 3, ’svn2793’, 0).

Example:

>>> import e32
>>> e32.pys60_version_info
(1, 9, 3, ’svn2793’, 0)
>>>

s60_version_info
Returns the S60 platform version of the device.

Example:

>>> import e32
>>> e32.s60_version_info
(3, 0)
>>>

is_ui_thread()
Returns True if the code that calls this function runs in the context of the UI thread; otherwise returns
False.

start_exe(filename, command [,wait])
Launches the native Symbian OS executable filename (Unicode) and passes it the command string. When
wait is set, the function synchronously waits for the exit of the executable and returns a value that describes
the exit type. Possible values are 0 for normal exit and 2 for abnormal exit.

start_server(filename)
Starts the Python script in file filename (Unicode) as a server in its own process. Note that appuifw
module is not available to a server script.

reset_inactivity()
Resets the timers since the user was last active. As a consequence, the device backlight is normally turned
on when this function is invoked.

inactivity()
Returns the time in seconds since the user of the device was last active.

get_capabilities()
Returns tuple of capabilities granted to the application. Example:

>>> import e32
>>> e32.get_capabilities()
(’ReadUserData’,’WriteUserData’)
>>>

has_capabilities(capability list)
Check if the application has all the capabilities that are passed in a list, ’capability list’. Returns True if all
the capabilities specified in the list are present, False otherwise.

Examples:

6 Chapter 2. Operating System Services and Information

>>> import e32
>>> e32.has_capabilities([’Location’,’ReadUserData’])
False
>>> e32.has_capabilities([’Location’,’SwEvent’])
False
>>> e32.has_capabilities([’WriteUserData’,’ReadUserData’])
True
>>>

2.1.2 Ao lock Type

class Ao_lock()
Creates an Ao_lock instance. A Symbian active object based synchronization service. This can be used
in the main thread without blocking the handling of UI events. The application should not exit while a
thread is waiting in Ao_lock. If Ao_lock.wait is called while another wait call is already in
progress, an AssertionError is raised.

Instances of Ao_lock type have the following methods:

wait()
If the lock has already been signaled, returns immediately. Otherwise blocks in wait for the lock to be
signaled. Only one waiter is allowed, so you should avoid recursive calls to this service. wait can only be
called in the thread that created the lock object. During the wait, other Symbian-active objects are being
served, so the UI will not freeze. This may result in the UI callback code being run in the context of the
thread that is waiting in Ao_lock. This must be considered when designing the application logic.

signal()
Signals the lock. The waiter is released.

2.1.3 Ao timer Type

The rationale for the Ao_timer type is that you cannot cancel a pending e32.ao_sleep. This is problematic
if e.g. the user exits an application which is sleeping. In this case a panic would occur since the sleep is not
cancelled - this is the reason you should avoid using e32.ao_sleep and instead use the Ao_timer with
appropriate cancel calls if there is for example a possibility for the user to exit the application during a sleep.

class Ao_timer()
Creates an Ao_timer instance. A Symbian active object based sleeping service. This can be used in the
main thread without blocking the handling of UI events. The application should not exit while a thread has
a pending after call in Ao_timer. Only one after invocation can be pending at time for each
instance of this type.

Instances of Ao_timer type have the following methods:

after(interval [,callback])
Sleeps for the given interval without blocking the active scheduler. When the optional callback is given,
the call to after returns immediately and the callback gets called after interval.

cancel()
Cancels a pending after call.

2.2 sysinfo — Access to system information

The sysinfo module offers an API for checking the system information of a S60 mobile device.

The sysinfo module has the following functions:

active_profile()
Returns the current active profile as a string, which can be one of the following: ’general’,

2.2. sysinfo — Access to system information 7

’silent’, ’meeting’, ’outdoor’, ’pager’, ’offline’, , ’drive’, or ’user
<profile value>’.

battery()
Returns the current battery level. The value ranges from 0 (empty) to 100 (full) on a S60 mobile device.
On the emulator the value is always 0.

Note: The returned value may be incorrect while the device is being charged.

display_twips()
Returns the width and height of the display in twips. For a definition of a twip, see Chapter 9, Terms and
Abbreviations.

display_pixels()
Returns the width and height of the display in pixels.

free_drivespace()
Returns the amount of free space left on the drives in bytes, for example {u’C:’ 100}. The keys in the
dictionary are the drive letters followed by a colon (:).

imei()
Returns the IMEI code of the device as a Unicode string or, if running on the emulator, the hardcoded
string u’000000000000000’.

max_ramdrive_size()
Returns the maximum size of the RAM drive on the device.

total_ram()
Returns the amount of RAM memory on the device.

free_ram()
Returns the amount of free RAM memory available on the device.

total_rom()
Returns the amount of read-only ROM memory on the device.

ring_type()
Returns the current ringing type as a string, which can be one of the following: ’normal’,
’ascending’, ’ring_once’, ’beep’, or ’silent’.

os_version()
Returns the operating system version number of the device as a three element tuple (major version, minor
version, build number). The elements are as follows1:

•The major version number, ranging from 0 to 127 inclusive

•The minor version number, ranging from 0 to 99 inclusive

•The build number, ranging from 0 to 32767 inclusive.

signal_bars()
Returns the current network signal strength ranging from 0 to 7, with 0 meaning no signal and 7 meaning a
strong signal. If using an emulator, value 0 is always returned.

signal_dbm()
Returns the current network signal strength in dBm. This is available SDK 2.8 onwards. If using an
emulator value 0 is always returned.

sw_version()
Returns the software version as a Unicode string. On the emulator, returns the hardcoded string
u’emulator’. For example, a software version can be returned as u’V 4.09.1 26-02-04 NHL-10
(c) NMP’.

1Descriptions for these values are based on information found in S60 SDK documentation [4].

8 Chapter 2. Operating System Services and Information

CHAPTER

THREE

User Interface and Graphics

3.1 appuifw — Interface to the S60 GUI framework

The appuifw module offers an interface to the S60 UI application framework. Figure 3.1 provides an overview
of the Python for S60 environment for UI application programming.

Note: The services of this interface may only be used in the context of the main thread, that is, the initial thread
of a UI application script.

3.1.1 Basics of appuifw Module

Figure 3.2 shows the layout of a S60 application UI in the normal screen mode and a summary of how it relates
to the services available at the appuifw API. For alternative layouts, see Figure 3.3.

The main application window may be set up to be occupied by a UI control.

A multi-view application can show the different views as tabs in the navigation pane and react as the users
navigate between tabs.

Dialogs always take precedence over the usual UI controls and appear on top of them.

UI controls are implemented as Python types. These types are available:

• Text

• Listbox

• Canvas

UI controls appear on the screen as soon as an instance of the corresponding Python type is set to the body field
(app.body) of the current application UI.

Form is a versatile dialog implemented as a type.

The Content_handler type facilitates interfacing to other UI applications and common high-level UI
components. It is based on the notion that designated handlers can reduce UI application interaction to operations
on MIME-type content.

The following dialogs are implemented as functions:

• note

• query

• multi_query

• selection_list

• multi_selection_list

9

Figure 3.1: Python for S60 UI environment overview

Figure 3.2: The different parts of the screen when using the ’normal’ layout

10 Chapter 3. User Interface and Graphics

Figure 3.3: UI layouts. left: ’normal’, middle: ’large’, right: ’full’

• popup_menu

A dialog becomes visible as soon as the corresponding Python function has been called. The function returns
with the eventual user input or information on the cancellation of the dialog. Form is an exception; it is shown
when its execute method is called.

3.1.2 Softkeys

The softkeys are managed by the underlying S60 Platform. When no dialog is visible, the right softkey is bound
to application exit and the left one represents an Options menu. Python for S60 offers an interface for
manipulating the menu and for binding the Exit key to a Python-callable object (see Section 3.1.4).

The native code that implements a dialog also manages the softkeys of the dialog, typically OK and Cancel.
When the user input needs to be validated before accepting it and dismissing the dialog, it is best to use Form.

3.1.3 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the appuifw module:

available_fonts()
Returns a list (Unicode) of all fonts available in the device.

touch_enabled()
Returns ’True’ if the device supports touch input, ’False’ otherwise.

query(label, type[, initial value])
Performs a query with a single-field dialog. The prompt is set to label, and the type of the dialog is defined
by type. The value of type can be any of the following strings:

•’text’
•’code’
•’number’
•’date’
•’time’

3.1. appuifw — Interface to the S60 GUI framework 11

•’query’
•’float’

The type of the optional initial value parameter and the returned input depend on the value of type:

•For text fields, (’text’, ’code’) it is Unicode

•For number fields, it is numeric

•For date fields, it is seconds since epoch rounded down to the nearest local midnight

A simple confirmation query and time query take no initial value and return True/None and seconds
since local midnight, correspondingly. All queries return None if the users cancel the dialog.

For ’float’ query the initial value setting has no effect.

multi_query(label 1, label 2)
A two-field text (Unicode) input dialog. Returns the input values as a 2-tuple. Returns None if the users
cancel the dialog.

note(text[, type[, global]])
Displays a note dialog of the chosen type with text (Unicode). The default value for type is ’info’,
which is automatically used if type is not set. type can be one of the following strings: ’error’, ’info’
or ’conf’.

If global (integer) is any other value than zero a global note is displayed. A global note is displayed even if
the Python application calling this function is in background. The same set of types is supported as in
standard note.

popup_menu(list[, label])
A pop-up menu style dialog. list representing the menu contents can be a list of Unicode strings or a list of
Unicode string pairs (tuples). The resulting dialog list is then a single-style or a double-style list. A
single-style list is shown in full; whereas a double-style list shows the items one at a time. Returns None if
the user cancels the operation.

selection_list(choices[, search field=0])
Executes a dialog that allows the users to select a list item and returns the index of the chosen item, or
None if the selection is cancelled by the users. choices is a list of Unicode strings. search field is 0
(disabled) by default and is optional. Setting it to 1 enables a search field (find pane) that facilitates
searching for items in long lists. If enabled, the search field appears after you press a letter key.

multi_selection_list(choices[, style=’checkbox’, search field=0])
Executes a dialog that allows the users to select multiple list items. Returns a tuple of indexes (a pair of
Unicode strings) of the chosen items, or empty tuple if the no selection is made by the users. choices is a
list of Unicode strings. style is an optional string; the default value being ’checkbox’. If ’checkbox’
is given, the list will be a checkbox list, where empty checkboxes indicate what items can be marked. The
other possible value that can be set for style is ’checkmark’. If ’checkmark’ is given, the list will be
a markable list, which lists items but does not indicate specifically that items can be selected. To select
items on a markable list, use the ’Options’ that has Mark/Unmark or the Edit key to select an item and the
Navigation key to browse the list. For example views on checkbox and markable lists, see Figure 3.4.
search field is 0 (disabled) by default and is optional. Setting it to 1 enables a search field (find pane) that
facilitates searching for items in long lists. If enabled, the search field is always visible with checkbox lists;
with markable lists it appears by pressing a letter key.

Example:

tuple = appuifw.multi_selection_list([u’Harry’, u’Ron’, u’Hermione’, u’Voldemort’], style=’checkmark’, search_field=1)

3.1.4 Application Type

A single implicit instance of this type always exists when appuifw module is present and can be referred to
with the name app. New instances cannot be created by a Python program.

12 Chapter 3. User Interface and Graphics

Figure 3.4: Examples of a checkbox list (left) and a markable list (right)

class Application
Instances of Application type have the following attributes:

body
The UI control that is visible in the application’s main window. Currently either Text, a Listbox
object, Canvas, or None.

directional_pad
A boolean flag which controls the appearance of a virtual 4-way directional pad that is displayed
either at the bottom of the screen or on the right hand corner depending on the orientation when using
a Canvas. This is enabled by default on devices that do not have a physical left and right soft key.
This value is ignored on other devices, hence setting it to either True or False will have no effect.
Set it to True to enable 4-way directional pad and False to disable it.

exit_key_handler
A callable object that is called when the user presses the Exit softkey. Setting
exit_key_handler to None sets it back to the default value.

focus
A callable object that is called with integer as parameter (0 = focus lost, 1 = focus regained) when the
application receives focus or it is switched to background. Focus is received e.g. when the
application is switched from background to foreground or when the focus is regained from
screensaver. Similarly when the screensaver is displayed, focus is lost.
Examples:

>>> import appuifw
>>> def cb(fg):
... if(fg):
... print "foreground"
... else:
... print "background"
...
>>> appuifw.app.focus=cb
>>> # switch to background, following text is printed from callback:
>>> background
>>> # switch to foreground, following text is printed from callback:
>>> foreground

3.1. appuifw — Interface to the S60 GUI framework 13

Note: An improper callback can cause adverse effects. If you, for example, define a callback which
takes no parameters you will receive never-ending TypeError exceptions on the Nokia 6600.

menu
This is a list of the following kinds of items:
•(title, callback) which creates a regular menu item
•(title, ((title, callback)[...])) which creates a submenu

title (Unicode) is the name of the item and callback the associated callable object. The maximum
allowed number of items in a menu, or items in a submenu, or submenus in a menu is 30.
Example:

appuifw.app.menu = [(u"Item 1", item1),
(u"Submenu 1",

((u"Subitem 1", subitem1),
(u"Subitem 2", subitem2)))]

orientation
The orientation of the application. The orientation of the application can be one of the following
values: ’automatic’ (this is the default value), ’portrait’ or ’landscape’.

screen
The screen area used by an application. See Figure 3.3 for example screens. The appearance of the
application on the screen can be affected by setting one of the following values: ’normal’,
’large’ and ’full’.
Examples:

appuifw.app.screen=’normal’ # normal screen with title pane and softkey labels
appuifw.app.screen=’large’ # only softkey labels visible
appuifw.app.screen=’full’ # full screen mode on all devices

title
The title of the application that is visible in the application’s title pane. Must be Unicode.

track_allocations
Set this to true if the interpreter should track all memory allocations and then free the memory which
was not explicitly released before application exit. The default value of this attribute is true. As a
consequence if there are any memory leaks in the 3rd party extension modules they will be released
at the end. To check if there are memory leaks(for debugging purposes) the following approach can
be used :

appuifw.app.track_allocations = false

import my_extension
my_extension.do_something()

appuifw.app.track_allocations = true

If the extension leaks memory then it will be reported at application exit.

Instances of Application type have the following methods:

activate_tab(index)
Activates the tab index counting from zero.

full_name()
Returns the full name, in Unicode, of the native application in whose context the current Python
interpreter session runs.

layout(layout id)
Returns as a tuple the size and the position of the requested layout_id. The logical layouts are
outlined partly in Figure 3.2. The position is given from the top left corner. The layout_id can be
one of the constants defined in module appuifw1:

1Descriptions of the values are from the S60 SDK documentation [4].

14 Chapter 3. User Interface and Graphics

EScreen
Screen.

EApplicationWindow
Window that fills the entire screen.

EStatusPane
Indicates common components for most of the applications.

EMainPane
The application main pane is used in all the applications.

EControlPane
Control pane.

ESignalPane
The signal pane is used to indicate signal strength.

EContextPane
The context pane is used to indicate an active application.

ETitlePane
Used to indicate the subject or the name of the main pane content.

EBatteryPane
The battery pane is used to indicate battery strength.

EUniversalIndicatorPane
The universal indicator pane is used to indicate items that require the user’s attention while
browsing applications.

ENaviPane
The navi pane is used to indicate navigation within an application, to provide context sensitive
information to the user while entering or editing data, or to show additional information.

EFindPane
A fixed find pane is used with lists instead of the find pop-up window.

EWallpaperPane
Wallpaper pane.

EIndicatorPane
The universal indicator pane is used to indicate items that require the user’s attention while
browsing applications.

EAColumn
Used generally to display small sized graphics or heading texts.

EBColumn
Used generally to display large sized icons or heading texts.

ECColumn
Used generally to display data entered by the user. Overlaps with the D column.

EDColumn
Used generally to display additional icons. Overlaps with the C column.

EStaconTop
Top part of status and control panes in landscape layout.

EStaconBottom
Bottom part of status and control panes in landscape layout.

EStatusPaneBottom
Bottom part of status pane in landscape layout.

EControlPaneBottom
Bottom part of control pane in landscape layout.

EControlPaneTop
Top part of control pane in landscape layout.

EStatusPaneTop
Top part of status pane in landscape layout.

Example:

3.1. appuifw — Interface to the S60 GUI framework 15

>>> import appuifw
>>> appuifw.app.layout(appuifw.EMainPane)
((176, 144), (0, 44))
>>> # size and position (x, y) of the main pane in Nokia N70

set_exit()
Requests a graceful exit from the application as soon as the current script execution returns.

set_tabs(tab texts[,callback=None])
Sets tabs with given names on them in the navigation bar; tab texts is a list of Unicode strings. When
the users navigate between tabs, callback gets called with the index of the active tab as an argument.
Tabs can be disabled by giving an empty or one-item tab texts list.

uid()
Returns the UID, in Unicode, of the native application in whose context the current Python interpreter
session runs.

3.1.5 Form Type

Form implements a dynamically configurable, editable multi-field dialog. Form caters for advanced dialog use
cases with requirements such as free selectability of the combination of fields, possibility of validating the user
input, and automatically producing the contents of some dialog fields before allowing the closing of the dialog.

class Form(fields[, flags=0])
Creates a Form instance. fields is a list of field descriptors: (label, type[, value]) where

label is a Unicode string

type is one of the following strings: ’text’, ’number’, ’date’, ’time’, ’combo’ or ’float’

value, depending on type: Unicode string, numeric, float (seconds since Unix epoch rounded down to the
nearest local midnight), float (seconds since local midnight), ([choice_label ...], index) of
float. For ’float’ type the initial value setting might not be shown in the UI.

Form can also be configured and populated after construction. The configuration flags are visible as an attribute.
Form implements the list protocol that can be used for setting the form fields, as well as obtaining their values
after the dialog has been executed.

Instances of Form type have the following attributes:

flags
This attribute holds the values of the various configuration flags. Currently supported flags are:

FFormEditModeOnly
When this flag is set, the form remains in edit mode while execute runs.

FFormViewModeOnly
When this flag is set, the form cannot be edited at all.

FFormAutoLabelEdit
This flag enables support for allowing the end-users to edit the labels of the form fields.

FFormAutoFormEdit
This flag enables automatic support for allowing the end-users to add and delete the form fields. Note
that this is an experimental feature and is not guaranteed to work with all SDK versions.

FFormDoubleSpaced
When this flag is set, double-spaced layout is applied when the form is executed: one field takes two
lines, as the label and the value field are on different lines.

menu
A list of (title, callback) pairs, where each pair describes an item in the form’s menu bar that is
active while the dialog is being executed. title (Unicode) is the name of the item and callback the
associated callable object.

save_hook
This attribute can be set to a callable object that receives one argument and returns a Boolean value. It gets

16 Chapter 3. User Interface and Graphics

called every time the users want to save the contents of an executing Form dialog. A candidate list for new
form content - a list representing the currently visible state of the UI - is given as an argument. The list can
be modified by save_hook. If save_hook returns True, the candidate list is set as the new contents of
the form. Otherwise, the form UI is reset to reflect the field list contained in Form object.

Instances of Form type have the following methods:

execute()
Executes the dialog by making it visible on the UI.

insert(index, field descriptor)
Inserts the field descriptor into the Form before the given index.

pop()
Removes the last field descriptor from the Form and returns it.

length()
the number of field descriptors in the form.

The subscript notation f[i] can be used to access or modify the i-th element of the form f. Same limitations as
discussed above in the context of the flag FFormAutoFormEdit apply to modifying a form while it is
executing. The ability to change the schema of a form while it is executing is an experimental feature.

3.1.6 Text Type

Text is a text editor UI control. For examples on the options available with Text, see Figure 3.5.

Figure 3.5: Examples of the options available for Text type

Instances of Text type have the following attributes:

color
The color of the text. color supports the same color representation models as the graphics module.
For the supported color representation models, see Section 3.3.

focus
A Boolean attribute that indicates the focus state of the control. Editor control also takes the ownership of
the navigation bar, and this feature is needed to enable the usage of this control in applications that use the
navigation bar - for example, navigation tabs.

font
The font of the text. There are two possible ways to set this attribute:

•Using a supported Unicode font, for example u"Latin12". Trying to set a font which is not
supported by the device has no effect. A list of supported fonts can be retrieved by using
appuifw.available_fonts.
Example, setting font:

3.1. appuifw — Interface to the S60 GUI framework 17

t = appuifw.Text()
t.font = u"albi17b" # sets font to Albi 17 bold
t.font = u"LatinPlain12" # sets font to Latin Plain 12

•Using one of the default device fonts that are associated with the following labels (plain strings):
’annotation’, ’title’, ’legend’, ’symbol’, ’dense’, ’normal’.

Example, setting font:

t.font = "title" # sets font to the one used in titles

Example, checking the currently set font:

unicodeFont = t.font

The attribute value retrieved is always a Unicode string. If the font has been set with a label, for example,
’title’, the attribute will retrieve the font associated with that label.

highlight_color
The highlight color of the text. highlight_color supports the same color representation models as the
graphics module. For the supported color representation models, see Section 3.3.

style
The style of the text. The flags for this attribute are defined in the appuifw module. These flags can be
combined by using the binary operator |. The flags can be divided into two types: text style and text
highlight. Text style flags can be freely combined with each other. However, one or more text style flags
can be combined with only one text highlight flag. The flags are:

Text style:

STYLE_BOLD
Enables bold text.

STYLE_UNDERLINE
Enables underlined text.

STYLE_ITALIC
Enables italic text.

STYLE_STRIKETHROUGH
Enables strikethrough.

Text highlight:

HIGHLIGHT_STANDARD
Enables standard highlight.

HIGHLIGHT_ROUNDED
Enables rounded highlight.

HIGHLIGHT_SHADOW
Enables shadow highlight.

Only one highlight is allowed to be used at once. Therefore, it is possible to combine only one highlight
with one or more text styles.

Examples:

18 Chapter 3. User Interface and Graphics

t = appuifw.Text()

These and other similar values and combinations are valid:
t.style = appuifw.STYLE_BOLD
t.style = appuifw.STYLE_UNDERLINE
t.style = appuifw.STYLE_ITALIC
t.style = appuifw.STYLE_STRIKETHROUGH
t.style = (appuifw.STYLE_BOLD|

appuifw.STYLE_ITALIC|
appuifw.STYLE_UNDERLINE)

These values are valid:
t.style = appuifw.HIGHLIGHT_STANDARD
t.style = appuifw.HIGHLIGHT_ROUNDED
t.style = appuifw.HIGHLIGHT_SHADOW

This combination is NOT valid:
Invalid code, do not try!
t.style = (appuifw.HIGHLIGHT_SHADOW|appuifw.HIGHLIGHT_ROUNDED)

Instances of Text type have the following methods:

add(text)
Inserts the Unicode string text to the current cursor position.

bind(event code, callback)
Binds the callable Python object callback to event event code. The key codes are defined in the
key_codes library module. The call bind(event_code, None) clears an existing binding. In the
current implementation the event is always passed also to the underlying native UI control.

clear()
Clears the editor.

delete([pos=0, length=len()])
Deletes length characters of the text held by the editor control, starting from the position pos.

get_pos()
Returns the current cursor position.

len()
Returns the length of the text string held by the editor control.

get([pos=0, length=len()])
Retrieves length characters of the text held by the editor control, starting from the position pos.

set(text)
Sets the text content of the editor control to Unicode string text.

set_pos(cursor pos)
Sets the cursor to cursor pos.

3.1.7 Listbox Type

An instance of this UI control type is visible as a listbox, also known as a list in Symbian, that can be configured
to be a single-line item or a double-item listbox. Figure 3.6 shows a single-line item Listbox with icons. For
more information on the MBM and MIF formats, see Section 3.1.8.

class Listbox(list, callback)
Creates a Listbox instance. A callable object callback gets called when a listbox selection has been
made. list defines the content of the listbox and can be one of the following:

•A normal (single-line item) listbox: a list of Unicode strings, for example [unicode_string
item1, unicode_string item2]

•A double-item listbox: a two-element tuple of Unicode strings , for example [(unicode_string

3.1. appuifw — Interface to the S60 GUI framework 19

Figure 3.6: Listbox with icons

item1, unicode_string item1description), (unicode_string item2,
unicode_string item2description)]

•A normal (single-line item) listbox with graphics: a two-element tuple consisting of a Unicode string
and an Icon object, for example [(unicode_string item1, icon1),
(unicode_string item2, icon2)].

•A double-item listbox with graphics: a three-element tuple consisting of two Unicode strings and one
Icon object, for example [(unicode_string item1, unicode_string
item1description, icon1), (unicode_string item2, unicode_string
item2description, icon2)]

Example: To produce a normal (single-line item) listbox with graphics:

icon1 = appuifw.Icon(u"z:\\resource\\apps\\avkon2.mbm", 28, 29)
icon2 = appuifw.Icon(u"z:\\resource\\apps\\avkon2.mbm", 40, 41)
entries = [(u"Signal", icon1),

(u"Battery", icon2)]
lb = appuifw.Listbox(entries, lbox_observe)

Note: Known issue: Using this widget in large/full screen mode results in an unrefreshed area at the bottom of
the screen.

Instances of Listbox type have the following methods and properties:

bind(event code, callback)
Binds the callable Python object callback to event event code. The key codes are defined in the
key_codes library module. The call bind(event_code, None) clears an existing binding. In the
current implementation the event is always passed also to the underlying native UI control.

current()
Returns the currently selected item’s index in the Listbox.

set_list(list[, current])
Sets the Listbox content to a list of Unicode strings or a list of tuples of Unicode strings. The accepted
structures of list are the same as in the Listbox constructor. The optional argument current is the index
of the focused list item.

size
The size of the Listbox as a tuple (width, height) - Read only.

position
The coordinates (as a tuple) of the top left corner of the Listbox - Read only.

20 Chapter 3. User Interface and Graphics

3.1.8 Icon Type

An instance of Icon type encapsulates an icon to be used together with a Listbox instance. Note that
currently Icon can only be used with Listbox (see Section 3.1.7).

MBM is the native Symbian OS format used for pictures. It is a compressed file format where the files can
contain several bitmaps and can be referred to by a number. An .mbg file is the header file usually associated
with an .mbm file, which includes symbolic definitions for each bitmap in the file. For example, an ‘avkon.mbm’
file has an associated index file called ‘avkon.mbg’, which is included in S60 SDKs. For more information on the
MBM format and the bitmap converter tool, see [4] and search the topics with the key term ”How to provide
Icons”; this topic also points you to the Bitmap Converter tool that can be used for converting bitmaps into the
MBM format.

class Icon(filename, bitmap, bitmapMask)
Creates an icon. filename is a Unicode file name and must include the whole path. Note that MBM is the
only file formats supported. bitmap and bitmapMask are integers that represent the index of the icon and
icon mask inside that file respectively.

Example: The following builds an icon with the standard signal symbol:

icon = appuifw.Icon(u"z:\\resource\\apps\\avkon2.mbm", 28, 29)

3.1.9 Content handler Type

An instance of Content_handler handles data content by its MIME type.

class Content_handler([callback])
Creates a Content_handler instance. A Content handler handles data content by its MIME type. The
optional callback is called when the embedded handler application started with the open method finishes.

Instances of Content_handler type have the following methods:

open(filename)
Opens the file filename (Unicode) in its handler application if one has been registered for the particular
MIME type. The handler application is embedded in the caller’s thread. The call to this function returns
immediately. When the handler application finishes, the callback that was given to the
Content_handler constructor is called.

open_standalone(filename)
Opens the file filename (Unicode) in its handler application if one has been registered for the particular
MIME type. The handler application is started in its own process. The call to this function returns
immediately. Note that callback is not called for applications started with this method.

3.1.10 Canvas Type

Canvas is a UI control that provides a drawable area on the screen and support for handling raw key events.
Canvas supports the standard drawing methods that are documented in Section 3.3.

class Canvas([redraw callback=None, event callback=None, resize callback=None])
Constructs a Canvas. The optional parameters are callbacks that are called when specific events occur.

Note: Watch out for cyclic references here. For example, if the callbacks are methods of an object that
holds a reference to the Canvas, a reference cycle is formed that must be broken at cleanup time or the
Canvas will not be freed.

redraw callback is called whenever a part of the Canvas has been obscured by something, is then
revealed, and needs to be redrawn. This can typically happen, for example, when the user switches away
from the Python application and back again, or after displaying a pop-up menu. The callback takes as its
argument a four-element tuple that contains the top-left and the bottom-right corner of the area that needs
to be redrawn. In many cases redrawing the whole Canvas is a reasonable option.

3.1. appuifw — Interface to the S60 GUI framework 21

event callback is called whenever a raw key event is received or when a pointer event occurs(only on touch
input supported devices). There are three kinds of key events: EEventKeyDown, EEventKey, and
EEventKeyUp. When a user presses a key down, events EEventKeyDown and EEventKey are
generated. When the key is released, an EEventKeyUp event is generated.

Pointer events are generated by touch input supported devices. When the screen is touched the
EButton1Down event is generated, EDrag while the finger/stylus is dragged across the screen and then
EButton1Up when the finger/stylus is lifted.

The argument to the event callback is a dictionary that contains the following data:

For key events:

•’type’: one of EEventKeyDown, EEventKey, or EEventKeyUp

•’keycode’: the keycode of the key

•’scancode’: the scancode of the key

•’modifiers’: the modifiers that apply to this key event

For pointer events:

•’type’: one of the several pointer events - EButton1Up, EButton1Down, EDrag etc..

•’modifiers’: the modifiers that apply to this pointer event

•’pos’: A tuple containing the x-y pointer co-ordinates

Each key on the keyboard has one or more scancodes and zero or more keycodes associated with it. A
scancode represents the physical key itself and a keycode is the result of state-related operating system
defined processing done on the key. For keys that correspond to a symbol in the current character set of the
phone, the keycode is equal to the code of the corresponding symbol in that character set. For example, if
you are using the Nokia Wireless Keyboard (SU-8W), pressing the key A will always produce the
scancode 65 (ASCII code for an upper case A), but the keycode could be either 65 or 91 (ASCII code for a
lower case A) depending on whether or not the Shift key is pressed or Caps Lock is active.

The key_codes module contains definitions for the keycodes and scancodes. See Figure 3.7 for the
codes of the most common keys on the phone keypad.

Some keys are handled in a special way:

•A short press of the Edit key causes it to stay down, meaning that no EEventKeyUp event is sent.
The event is only sent after a long press.

•Detecting presses of the Voice tags key or the Power key is not supported.

•If the right softkey is pressed, the appuifw.app.exit_key_handler callback is always
executed.

There is no way to prevent the standard action of the Hang-up key, the Menu key, the Power key or the
Voice tags key from taking place.

resize callback is called when screen size is changed when the Canvas rect size has been changed. The
callback takes as its argument a two-element tuple that contains the new clientRect width and height.

Instances of Canvas type have the following methods:

bind(pointer event, callable[, ((x1, y1), (x2, y2))])
This method can be used to listen to specific pointer events. The pointer event argument can be any one of
the pointer events listed in the key_codes module.

The most common pointer events are:

•EButton1Down - Pen down event

•EButton1Up - Pen up event

•EDrag - Drag event (This event is only received when button1 is down)

•ESwitchOn - Switch on event caused by a screen tap.

22 Chapter 3. User Interface and Graphics

Key Keycode Scancode
1. EKeyLeftSoftkey EScancodeLeftSoftkey
2. EKeyYes EScancodeYes
3. EKeyMenu EScancodeMenu
4. EKey0...9 EScancode0...9
5. EKeyStar EScancodeStar
6. EKeyLeftArrow EScancodeLeftArrow
7. EKeyUpArrow EScancodeUpArrow
8. EKeySelect EScancodeSelect
9. EKeyRightArrow EScancodeRightArrow
10. EKeyDownArrow EScancodeDownArrow
11. EKeyRightSoftkey EScancodeRightSoftkey
12. EKeyNo EScancodeNo
13. EKeyBackspace EScancodeBackspace
14. EKeyEdit EScancodeEdit
15. EKeyHash EScancodeHash

Figure 3.7: Keycodes and scancodes for phone keys usable from Python applications

3.1. appuifw — Interface to the S60 GUI framework 23

Figure 3.8: Canvas bind scenarios

callable is called when the pointer event and the co-ordinate (if specified) criterion matches.

((x1, y1), (x2, y2)) is an optional argument that can be passed to specify the screen area to monitor for any
specific pointer event. The two co-ordinate tuple corresponds to the top-left and bottom-right points. This
argument will be ignored if the event is not a pointer event.

There are several ways in which bind can be used:

•my_canv.bind(EButton1Up, callback) - The callback is called when EButton1Up event
is generated anywhere in the canvas.

•my_canv.bind(EButton1Up, green_callback, ((x1, y1), (x2, y2))) - The
callback is called when the EButton1Up pointer event occurs inside the screen area specified.

•my_canv.bind(EButton1Up, yellow_callback, ((x3, y3), (x4, y4))) -
Registers another callback for a different region but for the same pointer event. When two screen
areas overlap, the callback registered last will be called when pointer events occur in the intersected
region.

•my_canv.bind(EButton1Up, callback3, ((x1, y1), (x2, y2))) - If the pointer
event and the screen area to be monitored are the same, the callback passed will replace the old
callback already registered.

•my_canv.bind(EButton1Up, None, ((x1, y1), (x2, y2))) - If the pointer event
and the screen area to be monitored are the same, and the callback passed is None, the callback
registered previously is cleared.

•my_canv.bind(EButton1Up, None) - All callbacks previously registered for this pointer
event are cleared, regardless of whether it was for a specific screen area or for the entire canvas.

Clicking on the white spot should result in green_callback to be called. Clicking on the red spot
should result in yellow_callback to be called in both the scenarios shown above provided the

24 Chapter 3. User Interface and Graphics

yellow_callback was registered last. Clicking on the purple spot should result in
yellow_callback to be called.

begin_redraw([((x1, y1), (x2, y2))])
This is an explicit function that can be used to signal the window server that ”I’m about to redraw this
area”. This method tells the window server that the window is about to respond to the last redraw event by
redrawing the specified rectangle. This causes the window server to clear the rectangle, and remove it from
the invalid region. The optional co-ordinates x1, y1, x2, y2 should be the rectangle that has to be marked
for redrawing.

After the redraw is complete the application should call end redraw().

Note: The begin redraw and end redraw methods should not be called inside the redraw callback function.

Couple of FAQs on redraw/non-redraw drawing:

Question: What is non-redraw drawing?

•”Non-redraw drawing” is any canvas/graphics drawing operation performed outside of
begin redraw()/end redraw().

Question: What should applications do instead of non-redraw drawing?

•”Redraw drawing” is any drawing delimited by begin redraw()/end redraw().

Question: Why is non-redraw drawing bad for performance?

•The window server caches drawing operations in the redraw store. Delimiting drawing with
begin redraw()/end redraw() allows window server to efficiently manage drawing operations.
If applications perform drawing operations outside begin redraw/end redraw, window server cannot
cull drawing operations from its cache of drawing operations, because it cannot know whether a set
of drawing operations has been superceded by a new set. In this scenario every frame of drawing that
is done on a non-redraw drawing window will become slower and slower as it draws all the drawing
operations for the entire history of the window (well actually up until the last
begin redraw/end redraw for the whole window).
If an application performs begin redraw/end redraw, it tells the window server that it can throw away
any old drawing operations it had for the area of the window specified in the redraw, thus allowing for
more optimal management of drawing operations.

Question: What are the changes required for redraw drawing?

•Applications should delimit their drawing with begin redraw()/end redraw() - i.e. they should replace
non-redraw drawing with redraw drawing. Sometimes, this is as straight forward as adding these calls
to existing rendering code. In other cases (where the application has been drawing using ”incremental
updates” to the window, the application drawing code would need to be reworked to perform a full
refresh of the area redrawn for the rect provided in begin redraw(rect).

end_redraw()
Ends the current redraw. This function should be called when redrawing is complete.

Instances of Canvas type have the following attribute:

size
A two-element tuple that contains the current width and height of the Canvas as integers.

Instances of Canvas type have the same standard drawing methods that are documented in Section 3.3.

3.1.11 InfoPopup Type

An instance of InfoPopup type encapsulates an UI tip widget. This widget can be placed on top of other
widgets to provide e.g. usage information to the user. The widget disappears as soon as the device’s user presses
any key or when the timer behind the InfoPopup is triggered.

class InfoPopup()
Creates an InfoPopup.

3.1. appuifw — Interface to the S60 GUI framework 25

show(text, [(x coord, y coord), time shown, time before, alignment])
Show text (Unicode) in the InfoPopup. The optional parameters are the location (a tuple from the upper
left corner), the time the popup is visible, time shown (in milliseconds), the time before the popup,
time before (in milliseconds) and the alignment of the popup.

The default values are: the coordinates (0, 0), time shown 5 seconds, time before 0 seconds and for the
alignment appuifw.EHLeftVTop.

The alignment can be one of the constants defined in module appuifw2:

EHLeftVTop
Object is left and top aligned.

EHLeftVCenter
Object is left aligned and centred vertically.

EHLeftVBottom
Object is left aligned and at the bottom.

EHCenterVTop
Object is centre aligned horizontally and at the top.

EHCenterVCenter
Object is centred horizontally and vertically.

EHCenterVBottom
Object is centred horizontally and at the bottom.

EHRightVTop
Object is right and top aligned.

EHRightVCenter
Object is right aligned and centred vertically.

EHRightVBottom
Object is right aligned and at the bottom.

hide()
Hides the popup immediately.

Example:

>>> import appuifw
>>> i=appuifw.InfoPopup()
>>> i.show(u"Here is the tip.", (0, 0), 5000, 0, appuifw.EHRightVCenter)
>>>

3.2 globalui — Interface to the S60 global UI notifiers

The globalui module offers an interface to the S60 global UI notifiers. This allows a global note and query to
be launched from an application which does not have a UI environment. The globalui module have functions:

global_note(note text[, type])
Displays a note of the chosen type with note text (Unicode). The default value for type is ’info’. type
can be one of the following strings: ’error’, ’text’, ’warn’, ’charging’, ’wait’,
’perm’,’not_charging’, ’battery_full’, ’battery_low’, ’recharge_battery’, or
’confirm’.

global_query(query text[, timeout])
Displays a global confirmation query with query text (Unicode). Returns 1 when the user presses ’Yes’
and 0 otherwise. If the user does not respond to the query within timeout seconds, returns None. If the
timeout value is 0, then the query waits indefinitely for user input. The default value for timeout is 0. The
timeout value should be an integer.

2Descriptions of the values are from the S60 SDK documentation [4].

26 Chapter 3. User Interface and Graphics

global_msg_query(query text, header text[, timeout])
Displays a global message query with query text(Unicode). header text is used to set the heading string of
the query. Returns 1 when the user presses ’OK’ and 0 otherwise. If the user does not respond to the query
within timeout seconds, returns None. If the timeout value is 0, then the query waits indefinitely for user
input. The default value for timeout is 0. The timeout value should be an integer.

global_popup_menu(option items[, header text, timeout])
Displays a global menu with option items(Unicode). header text is used to set the heading string of the
menu. If no value is passed for header text, then the header will not be displayed. Returns the index value
of the selected item from the list. If the user does not respond to the menu within timeout seconds, returns
None. If the timeout value is 0, then the menu waits indefinitely for the input. The default value for
timeout is 0. The timeout value should be an integer.

Example:

>>> import globalui, time
...
>>> text_to_show = u"text for showing note"
>>> globalui.global_note(text_to_show,’error’)
>>> time.sleep(6)
>>> globalui.global_note(text_to_show)
>>> time.sleep(6)
>>> result = globalui.global_query(u"do you want to continue ?")
>>> time.sleep(6)
>>> listresult = globalui.global_popup_menu([u"MenuItem1", u"MenuItem2"],u"Select item",5)
...

3.3 graphics — A graphics related services package

The graphics module provides access to the graphics primitives and image loading, saving, resizing, and
transformation capabilities provided by the Symbian OS.

The module is usable from both graphical Python applications and background Python processes. However,
background processes have some restrictions, namely that plain string symbolic font names are not supported in
background processes since background processes have no access to the UI framework (see also Section 3.3.4).

For an example on using this module, see [?].

3.3.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the graphics module:

screenshot()
Takes a screen shot and returns the image in Image format.

3.3.2 Image Class Static Methods

The following Image class static methods are defined in the graphics module:

Image.new(size[, mode=’RGB16’])
Creates and returns a new Image object with the given size and mode. size is a two-element tuple. mode
specifies the color mode of the Image to be created. It can be one of the following:

•’1’: Black and white (1 bit per pixel)

•’L’: 256 gray shades (8 bits per pixel)

•’RGB12’: 4096 colors (12 bits per pixel)

3.3. graphics — A graphics related services package 27

•’RGB16’: 65536 colors (16 bits per pixel)

•’RGB’: 16.7 million colors (24 bits per pixel)

It will also set the image size in twips according to the density of the device’s primary screen.

Image.open(filename)
Returns a new Image object (mode RGB16) that contains the contents of the named file. The supported
file formats are JPEG and PNG. The file format is automatically detected based on file contents. filename
should be a full path name.

Image.inspect(filename)
Examines the given file and returns a dictionary of the attributes of the file. At present the dictionary
contains only the image size in pixels as a two-element tuple, indexed by key ’size’. filename should be
a full path name.

3.3.3 Image Objects

An Image object encapsulates an in-memory bitmap.

Note on asynchronous methods: Methods resize, transpose, save, and load have an optional callback
argument. If the callback is not given, the method call is synchronous; when the method returns, the operation is
complete or an exception has been raised. If the callback is given, the method calls are asynchronous. If all
parameters are valid and the operation can start, the method call will return immediately. The actual computation
then proceeds in the background. When it is finished, the callback is called with an error code as the argument. If
the given code is 0, the operation completed without errors, otherwise an error occurred.

It is legal to use an unfinished image as a source in a blit operation; this will use the image data as it is at the
moment the blit is made and may thus show an incomplete result.

Image objects have the following methods:

resize(newsize[, callback=None, keepaspect=0])
Returns a new image that contains a resized copy of this image. If keepaspect is set to 1, the resize will
maintain the aspect ratio of the image, otherwise the new image will be exactly the given size.

If callback is given, the operation is asynchronous, and the returned image will be only partially complete
until callback is called.

transpose(direction[, callback=None])
Creates a new image that contains a transformed copy of this image. The direction parameter can be one of
the following:

•FLIP_LEFT_RIGHT: Flips the image horizontally, exchanging left and right edges.

•FLIP_TOP_BOTTOM: Flips the image vertically, exchanging top and bottom edges.

•ROTATE_90: Rotates the image 90 degrees counterclockwise.

•ROTATE_180: Rotates the image 180 degrees.

•ROTATE_270: Rotates the image 270 degrees counterclockwise.

If callback is given, the operation is asynchronous and the returned image will be only partially complete
until callback is called.

load(filename[, callback=None])
Replaces the contents of this Image with the contents of the named file, while keeping the current image
mode. This Image object must be of the same size as the file to be loaded.

If callback is given, the operation is asynchronous and the loaded image will be only partially complete
until callback is called. filename should be a full path name.

save(filename[,callback=None, format=None, quality=75, bpp=24, compression=’default’])
Saves the image into the given file. The supported formats are JPEG and PNG. If format is not given or is
set to None, the format is determined based on the file name extension: ’.jpg’ or ’.jpeg’ are
interpreted to be in JPEG format and ’.png’ to be in PNG format. filename should be a full path name.

28 Chapter 3. User Interface and Graphics

When saving in JPEG format, the quality argument specifies the quality to be used and can range from 1 to
100.

When saving in PNG format, the bpp argument specifies how many bits per pixel the resulting file should
have, and compression specifies the compression level to be used.

Valid values for bpp are:

•1: Black and white, 1 bit per pixel

•8: 256 gray shades, 8 bits per pixel

•24: 16.7 million colors, 24 bits per pixel

Valid values for compression are:

•’best’: The highest possible compression ratio, the slowest speed

•’fast’: The fastest possible saving, moderate compression

•’no’: No compression, very large file size

•’default’: Default compression, a compromise between file size and speed

If callback is given, the operation is asynchronous. When the saving is complete, the callback is called
with the result code.

stop()
Stops the current asynchronous operation, if any. If an asynchronous call is not in progress, this method
has no effect.

Image objects have the following attributes:

size
A two-element tuple that contains the size of the Image. Read-only.

twipsize
A two-element tuple that contains the size of the Image in twips. Read/Write.

3.3.4 Common Features of Drawable Objects

Objects that represent a surface that can be drawn on support a set of common drawing methods, described in this
section. At present there are two such objects: Canvas from the appuifw module and Image from the
graphics module.

Options

Many of these methods support a set of standard options. This set of options is as follows:

• outline: The color to be used for drawing outlines of primitives and text. If None, the outlines of
primitives are not drawn.

• fill: The color to be used for filling the insides of primitives. If None, the insides of primitives are not
drawn. If pattern is also specified, fill specifies the color to be used for areas where the pattern is white.

• width: The line width to be used for drawing the outlines of primitives.

• pattern: Specifies the pattern to be used for filling the insides of primitives. If given, this must be either
None or a 1-bit (black and white) Image.

3.3. graphics — A graphics related services package 29

Coordinate representation

The methods accept an ordered set of coordinates in the form of a coordinate sequence. Coordinates can be of
type int, long, or float. A valid coordinate sequence is a non-empty sequence of either

• Alternating x and y coordinates. In this case the sequence length must be even, or

• Sequences of two elements, that specify x and y coordinates.

Examples of valid coordinate sequences:

• (1, 221L, 3, 4, 5.85, -3): A sequence of three coordinates

• [(1,221L),(3,4),[5.12,6]): A sequence of three coordinates

• (1,5): A sequence of one coordinate

• [(1,5)]: A sequence of one coordinate

• [[1,5]]: A sequence of one coordinate

Examples of invalid coordinate sequences:

Invalid code, do not use!

• []: An empty sequence

• (1,2,3): Odd number of elements in a flat sequence

• [(1,2),(3,4),None]: Contains an invalid element

• ([1,2],3,4): Mixing the flat and nested form is not allowed

Color representation

All methods that take color arguments accept the following two color representations:

• A three-element tuple of integers in the range from 0 to 255 inclusive, representing the red, green, and blue
components of the color.

• An integer of the form 0xrrggbb, where rr is the red, gg the green, and bb the blue component of the
color.

For 12 and 16 bit color modes the color component values are simply truncated to the lower bit depth. For the
8-bit grayscale mode images the color is converted into grayscale using the formula (2*r+5*g+b)/8, rounded
down to the nearest integer. For 1-bit black and white mode images the color is converted into black (0) or white
(1) using the formula (2*r+5*g+b)/1024.

Examples of valid colors:

• 0xffff00: Bright yellow

• 0x004000: Dark green

• (255,0,0): Bright red

• 0: Black

• 255: Bright blue

• (128,128,128): Medium gray

30 Chapter 3. User Interface and Graphics

Examples of invalid colors:

Invalid code, do not use!

• (0,0.5,0.9): Floats are not supported

• ’#ff80c0’: The HTML color format is not supported

• (-1,0,1000): Out-of-range values

• (1,2): The sequence is too short

• [128,128,192]: This is not a tuple

Font specifications

A font can be specified in three ways:

• None, meaning the default font

• a Unicode string that represents a full font name, such as u’LatinBold19’

• a plain string symbolic name that refers to a font setting currently specified by the UI framework

• as a two or three element tuple, where

– the first element is the font name (unicode or string) or None for default font
– the second element is the font height in pixels or None for default size
– the third (optional) element is the flags applied to the font or None for default options.

The flags are the following:

• FONT_BOLD bold

• FONT_ITALIC italic

• FONT_SUBSCRIPT subscript

• FONT_SUPERSCRIPT superscript

• FONT_ANTIALIAS forces the font to be antialiased

• FONT_NO_ANTIALIAS forces the font to not be antialiased

You can combine the flags with the binary or operator “—”. For example, the flags setting
FONT_BOLD|FONT_ITALIC will produce text that is both bold and italic.

Note: Antialiasing support is only available for scalable fonts.

You can obtain a list of all available fonts with the appuifw module function available_fonts.

The symbolic names for UI fonts are:

• ’normal’

• ’dense’

• ’title’

• ’symbol’

• ’legend’

• ’annotation’

Since background processes have no access to the UI framework, these symbolic names are not supported in
them. You need to specify the full font name.

3.3. graphics — A graphics related services package 31

Common Methods of Drawable Objects

line(coordseq[, <options>])
Draws a line connecting the points in the given coordinate sequence. For more information about the
choices available for options, see Section 3.3.4.

polygon(coordseq[, <options>])
Draws a line connecting the points in the given coordinate sequence, and additionally draws an extra line
connecting the first and the last point in the sequence. If a fill color or pattern is specified, the polygon is
filled with that color or pattern. For more information about the choices available for options, see Section
3.3.4.

rectangle(coordseq[, <options>])
Draws rectangles between pairs of coordinates in the given sequence. The coordinates specify the top-left
and the bottom- right corners of the rectangle. The sequence must have an even number of coordinates. For
more information about the choices available for options, see Section 3.3.4.

ellipse(coordseq[, <options>])
Draws ellipses between pairs of coordinates in the given sequence. The coordinates specify the top-left and
bottom-right corners of the rectangle inside which the ellipse is contained. The sequence must have an even
number of coordinates. For more information about the choices available for options, see Section 3.3.4.

pieslice(coordseq, start, end[, <options>])
Draws pie slices contained in ellipses between pairs of coordinates in the given sequence. The start and
end parameters are floats that specify the start and end points of pie slice as the starting and ending angle in
radians. The angle 0 is to the right, the angle pi/2 is straight up, pi is to the left and-pi/2 is straight
down. coordseq is interpreted the same way as for the ellipse method. For more information about the
choices available for options, see Section 3.3.4.

arc(coordseq, start, end[, <options>])
Draws arcs contained in ellipses between pairs of coordinates in the given sequence. The start and end
parameters are floats that specify the start and end points of pie slice as the starting and ending angle in
radians. The angle 0 is to the right, the angle pi/2 is straight up, pi is to the left and-pi/2 is straight
down. coordseq is interpreted the same way as for the ellipse method. For more information about the
choices available for options, see Section 3.3.4.

point(coordseq[, <options>])
Draws points in each coordinate in the given coordinate sequence. If the width option is set to greater than
1, draws a crude approximation of a circle filled with the outline color in the locations. Note that the
approximation is not very accurate for large widths; use the ellipse method if you need a precisely
formed circle. For more information about the choices available for options, see Section 3.3.4.

clear([color=0xffffff])
Sets the entire surface of the drawable to the given color, white by default.

text(coordseq, text[fill=0, font=None])
Draws the given text in the points in the given coordinate sequence with the given color (default value is
black) and the given font. The font specification format is described above.

measure_text(text[font=None, maxwidth=-1, maxadvance=-1])
Measures the size of the given text when drawn using the given font. Optionally you can specify the
maximum width of the text or the maximum amount the graphics cursor is allowed to move (both in
pixels).

Returns a tuple of three values:

•the bounding box for the text as a 4-tuple: (topleft-x, topleft-y, bottomright-x, bottomright-y)

•the number of pixels the graphics cursor would move to the right

•the number of characters of the text that fits into the given maximum width and advance

blit(image[,target=(0,0), source=((0,0),image.size), mask=None, scale=0])
Copies the source area from the given image to the target area in this drawable. The source area is copied
in its entirety if mask is not given or is set to None. If the mask is given, the source area is copied where
the mask is white. mask can be either None, a 1-bit (black and white) Image or a grayscale Image, and

32 Chapter 3. User Interface and Graphics

must be of the same size as the source image. A grayscale mask acts as an alpha channel, i.e. partial
transparency.

target and source specify the target area in this image and the source area in the given source. They are
coordinate sequences of one or two coordinates. If they specify one coordinate, it is interpreted as the
upper-left corner for the area; if they specify two coordinates, they are interpreted as the top-left and
bottom-right corners of the area.

If scale is other than zero, scaling is performed on the fly while copying the source area to the target area.
If scale is zero, no scaling is performed, and the size of the copied area is clipped to the smaller of source
and target areas.

Note that a blit operation with scaling is slower than one without scaling. If you need to blit the same
Image many times in a scaled form, consider making a temporary Image of the scaling result and blitting
it without scaling. Note also that the scaling performed by the blit operation is much faster but of worse
quality than the one done by the resize method, since the blit method does not perform any
antialiasing.

3.4 camera — Interface for taking photographs and video recording

The camera module enables taking photographs and video recording.

The following data items for state information are available in camera:

EOpenComplete
The opening of the video clip has succeeded.

ERecordComplete
The video recording has completed (not called on explicit stop_recording call).

EPrepareComplete
The device is ready to begin video recording.

The camera module has the following functions3:

cameras_available()
Returns the number of cameras available in the device.

image_modes()
Returns the image modes supported in the device as a list of strings, for example: [’RGB12’, ’RGB’,
’JPEG_Exif’, ’RGB16’].

image_sizes()
Returns the image sizes (resolution) supported in the device as a list of (x, y) tuples, for example:
[(640, 480), (160, 120)].

flash_modes()
Returns the flash modes available in the device as a list of strings.

max_zoom()
Returns the maximum digital zoom value supported in the device as an integer.

exposure_modes()
Returns the exposure settings supported in the device as a list of strings.

white_balance_modes()
Returns the white balance modes available in the device as a list of strings.

take_photo([mode, size, zoom, flash, exposure, white balance, position])
Takes a photograph and returns the image in:

1.Image format (for more information on Image format, see Chapter 3.3 graphics Module) or

2.Raw JPEG data4.
3Descriptions for some of the values are based on information found in S60 SDK documentation [4]
4For more information, see e.g. http://en.wikipedia.org/wiki/JPEG.

3.4. camera — Interface for taking photographs and video recording 33

http://en.wikipedia.org/wiki/JPEG

The settings listed below describe all settings that are supported by the camera module. You can retrieve
the mode settings available for your device by using the appropriate functions listed at the beginning of this
chapter.

•mode is the display mode of the image. The default value is ’RGB16’. The following display modes
are supported for the Image format pictures taken:

–’RGB12’: 4096 colors (12 bits per pixel)
–’RGB16’: 65536 colors (16 bits per pixel). Default value, always supported
–’RGB’: 16.7 million colors (24 bits per pixel)

For the JPEG data format images the following modes are supported:

–’JPEG_Exif’: JPEG Exchangeable image file format
–’JPEG_JFIF’: JPEG File Interchange Format

Note that there is variety between the devices and the supported formats.

•size is the resolution of the image. The default value is (640, 480). The following sizes are
supported, for example, in Nokia 6630: (1280, 960), (640, 480) and (160, 120).

•flash is the flash mode setting. The default value is ’none’. The following flash mode settings are
supported:

–’none’
No flash. Default value, always supported

–’auto’
Flash will automatically fire when required

–’forced’
Flash will always fire

–’fill_in’
Reduced flash for general lighting

–’red_eye_reduce’
Red-eye reduction mode

•zoom is the digital zoom factor. It is assumed to be on a linear scale from 0 to the maximum zoom
value allowed in the device. The default value is 0, meaning that zoom is not used.

•exposure is the exposure adjustment of the device. Exposure is a combination of lens aperture and
shutter speed used in taking a photograph. The default value is ’auto’. The following exposure
modes are supported:

–’auto’
Sets exposure automatically. Default value, always supported

–’night’
Night-time setting for long exposures

–’backlight’
Backlight setting for bright backgrounds

–’center’
Centered mode for ignoring surroundings

•white balance can be used to adjust white balance to match the main source of light. The term white
balance refers to the color temperature of the current light. A digital camera requires a reference
point to represent white. It will then calculate all the other colors based on this white point. The
default value for white balance is ’auto’ and the following white balance modes are supported:

–’auto’
Sets white balance automatically. Default value, always supported

–’daylight’
Sets white balance to normal daylight

–’cloudy’
Sets white balance to overcast daylight

–’tungsten’
Sets white balance to tungsten filament lighting

34 Chapter 3. User Interface and Graphics

–’fluorescent’
Sets white balance to fluorescent tube lighting

–’flash’
Sets white balance to flash lighting

•position is the camera used if the device, such as Nokia N95, has several cameras. In Nokia N95, the
camera pointing to the user of the device is located in position 1, whereas the one pointing away from
the user is located in position 0. The default position is 0.

If some other application is using the camera, this operation fails, with error SymbianError:
KErrInUse. Invoking this function right after the device boot, might result in SymbianError:
KErrNotReady error.

In some Nokia devices (e.g. in N95), to be able to get the highest possible size for the captured image, you
need to:

1.switch to the landscape mode (see appuifw.app.orientation)

2.import the camera module

3.take the picture in the ’JPEG_Exif’ format.

start_finder(callable[, backlight on=1, size=main pane size])
Starts the camera viewfinder and binds a callback to receive Image format feed. When a new viewfinder
frame is ready the callback is invoked with the Image as parameter.

The optional parameter backlight_on determines whether the device backlight is kept on when the
camera view finder is in operation. By default, the backlight is on (1 = on, 0 = off).

The optional parameter size (of type tuple, e.g. (176, 144)) can be used to change the size of the
Image received in the callback. The default size is the same as the application’s main pane size.

Example view finder code:

>>> import appuifw
>>> import camera
>>> def cb(im):
... appuifw.app.body.blit(im)
...
>>> import graphics
>>> appuifw.app.body=appuifw.Canvas()
>>> camera.start_finder(cb)
>>>

stop_finder()
Stops the viewfinder.

release()
Releases the camera – After invocation other applications can access the camera hardware.

start_record(filename, callable)
Starts video recording. filename is the file where the video clip is saved and callable will be called with
possible error code (int) and status information (see data in module camera) as parameter.

Prior calling this function, the view finder needs to be started.

stop_record()
Stops the video recording.

3.5 keycapture — Interface for global capturing of key events.

The keycapture module offers an API for global capturing of key events. The keycapture module
provides the KeyCapturer object as a tool for listening to events.

3.5. keycapture — Interface for global capturing of key events. 35

The KeyCapturer object uses a callback method to report the key events. The callback method is called each
time any of the specified keys is pressed.

Currently the keycapture module does not support capturing separate key-up or key-down events.

Note: Keycapture module requires SwEvent capability.

3.5.1 Module Level Constants

The following constants are defined in the keycapture module:

all_keys
A list of all key codes defined in the key_codes module.

3.5.2 KeyCapturer objects

KeyCapturer object takes a callback method as a mandatory parameter to its constructor. The callback
method must have one single parameter for forwarding the key code of the captured key.

There can be several KeyCapturer objects existing at the same time.

KeyCapturer object has following methods and properties:

keys
List of keys to be captured. Can be read and written.
Example:

keys = (key_codes.EkeyUpArrow,)
keys = keycapture.all_keys

forwarding
Specifies whether captured key events are forwarded to other applications or not. Either has value 1 or 0.
Can be read and written.

start()
Starts the actual capturing of key events.

stop()
Stops the actual capturing of key events.

last_key()
Returns last key code that is captured.

3.6 topwindow — Interface for creating windows that are shown on
top of other applications.

The topwindow module offers an API for creating windows that are shown on top of other applications and
managing the content of these windows. Images can be inserted into the windows and the background color,
visibility, corner type and shadow of the window can be manipulated.

topwindow extension does not provide sophisticated drawing capabilities by any means but rather relies on
services provided by the graphics extension: topwindow allows graphics Image objects to be put into
the windows that are represented by TopWindow objects.

TopWindow object provides mainly only two services: TopWindow objects can be shown or hidden and
Images can be put into the windows. However, several images can be added into one TopWindow object and
several TopWindow objects can be created and shown. Since the images can be manipulated using the
graphics extension this makes it possible to create many kind of content to the TopWindow objects.

36 Chapter 3. User Interface and Graphics

3.6.1 TopWindow objects

class TopWindow()
Create a TopWindow object.

TopWindow objects have the following methods and properties:

show()
Shows the window. The window is not shown until show() is called.

hide()
Hides the window.

add_image(image, position)
Inserts an image object graphics.Image into the window. The position of the image is specified by the
(position) parameter. If only the coordinates of the top left corner are specified, like (x1, y1) the image is
not resized. If four coordinates are given, like(x1, y1, x2, y2), the image is resized to fit to the specified
area.
Example:

add_image(image, (10,20))
add_image(image, (10,20,20,30))

remove_image(image[,position])
Removes the image from the window. Mandatory parameter image must be a graphics.Image object.
Parameter position may specify the top-left corner coordinates of the image or the rectangular area of the
image. If only image parameter is given, all the pictures representing this image object are removed from
the window. If both parameters are given, only the picture that matches both parameters is removed.
Example:

remove_image(image)
remove_image(image, (10,10))
remove_image(image, (10,10,20,20))

position
Specifies the coordinates of the top left corner of the window. Can be read and written.
Example:

position = (10, 20)

size
Specifies the size of the window. Can be read and written.
Example:

size = (100, 200)

images
The images inserted into the window. Defined as a list of tuple objects. Each tuple contains a
graphics.Image object and the position of the image. The position may specify the top-left coordinate
of the image and optionally also the bottom-right coordinate of the image. Parameter (x,y) specifies the
top-left coordinate, but does not resize the image while parameter like (x1,y1,x2,y2) specifies both the
top-left and bottom-right coordinates and possibly also resizes the image. Can be read and written. Also
see the add_image() and remove_image() methods.
Example:

images = [(image1,(x1,y1)), (image2,(x1,y1,x2,y2)), (image3,(50,50,100,100))]

sets the window content to be 3 images. image2 and image3 are possibly resized while the image1 is
not)

3.6. topwindow — Interface for creating windows that are shown on top of other applications. 37

shadow
Specifies if the shadow of the window is shown and the length of the shadow. Can be read and written.
Setting shadow = 0 makes the shadow invisible.
Example: shadow = 5

corner_type
Specifies the corner type of the window. Can be read and written. Corner type can be one of the following
values:

•square
•corner1
•corner2
•corner3
•corner5

Example: corner_type = "square"

maximum_size
Returns the maximum size of the window as a tuple (width, height). Read only property.

background_color
The background color of the window as an integer (e.g. 0xaabbcc). The two greatest hexadecimal digits
specify the red, the next two specify the blue and the last ones specify the green color. Can be read and
written.
Example: background_color = 0xffffff (sets the white color)

visible
Can be set to 0 or 1. 1 means that window is visible, 0 means that it is not. Can be read and written. Also
see the show and hide methods.

3.7 gles — Bindings to OpenGL ES

The gles module provides Python bindings to OpenGL ES 2D/3D graphics C API. OpenGL ES is a standard
defined by Khronos Group (www.khronos.org). Currently S60 Python supports OpenGL ES version 1.0 from
Series 60 version 2.6 onwards. Support for OpenGL ES version 1.1 should also become available in the near
future, and both versions are documented here. OpenGL ES 1.1 will require Series 60 version 3.0 or newer.

For detailed description of the OpenGL ES API see the official specifications at
http://www.khronos.org/opengles. This documentation contains only information that is specific to the S60
Python bindings to OpenGL ES. Where possible, the conventions of the PyOpenGL desktop OpenGL bindings
(http://pyopengl.sourceforge.net) have been followed.

The display of OpenGL ES graphics is handled by separate module, glcanvas. See glcanvas module
documentation for more information.

3.7.1 array type

gles module defines array type for representing numerical data of specific GL type. array objects are
convenient when numerical data for OpenGL ES calls is specified in Python code. Class array also defines the
standard Python sequence methods so its instances can be iterated and individual items in arrays can be
manipulated easily.

class array(type, dimension, sequence)
Constructs a new array object that contains the given type of data that is taken from sequence. Parameter
dimension specifies how many items there are in each array element. The dimension information is stored
with the array and is used by those functions that need to know the element size of the input data, for
example, if colors are specified with three or four components. The dimension does not affect the length of
an array or its indexing: both are based on individual items.

38 Chapter 3. User Interface and Graphics

Value of type must be one of the following: GL_FLOAT, GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT,
GL_UNSIGNED_SHORT, or GL_FIXED.

The data in sequence is flattened before it is used to fill the array. When type is GL_FLOAT, the sequence
can contains floats or integers. With all other types, sequence must only contain integers. Values in
sequence are casted in C to the requested type, so if the requested type cannot properly represent all the
values the results can be unexpected.

__len__()
Returns the number of items in the array. Note that array dimension does not affect the calculation of
the length.

__getitem__(index)
Returns the item in array with index. Note that array dimension does not affect indexing.

__setitem__(index, value)
Sets the value of the item in position index to value. Note that array dimension does not affect
indexing.

3.7.2 Error handling

Errors generated by the API calls are handled similarly as in PyOpenGL: all GL errors are reported as Python
exceptions of type gles.GLerror. The wrapper code checks GL error status after each call automatically.
There is no Python binding for glGetError call.

3.7.3 Differences to OpenGL ES C API

Certain OpenGL ES functions require special handling in Python, mainly because of the pointer parameters in
the C API. Additionally, special Python versions for some OpenGL ES functions have been added. Both of sets
of functions are documented below. If a function is not listed here its Python version should exactly match the C
version defined in the official OpenGL ES 1.0 and 1.1 specifications.

OpenGL ES 1.0

glColorPointer(size, type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.
gles.array objects require less processing and can be therefore slightly faster. If gles.array object
is used, the type and dimension of its data are ignored and size and type are used instead.

glColorPointerub(sequence)
Special Python version of glColorPointer that accepts either a gles.array object or some other
Python sequence object. Other parameters of glColorPointer will be determined as follows:

•size If sequence is an instance of gles.array, its dimension is used; otherwise the length of
sequence is used.

•type GL_UNSIGNED_BYTE

•stride 0

glColorPointerf(sequence)
Special Python version of glColorPointer that behaves exactly as glColorPointerub except
GL_FLOAT is used as type.

glColorPointerx(sequence)
Special Python version of glColorPointer that behaves exactly as glColorPointerub except
GL_FIXED is used as type.

glCompressedTexImage2D(target, level, internalformat, width, height, border, imageSize, data)
Parameter data must be either a gles.array or a Python string.

glCompressedTexSubImage2D(target, level, xoffset, yoffset, width, height, format, imageSize, data)
Parameter data must be either a gles.array or a Python string.

3.7. gles — Bindings to OpenGL ES 39

glDeleteTextures(sequence)
Parameter sequence must be a Python sequence containing integers.

glDrawElements(mode, count, type, indices)
Parameter indices must be either a gles.array or some other Python sequence object. gles.array
objects require less processing and can be therefore slightly faster. If gles.array object is used, the
type of its data is ignored and type is used instead.

glDrawElementsub(mode, indices)
Special Python version of glDrawElements that uses length of the sequence indices as count and
GL_UNSIGNED_BYTE as type.

glDrawElementsus(mode, indices)
Special Python version of glDrawElements that uses length of the sequence indices as count and
GL_UNSIGNED_SHORT as type.

glFogv(pname, params)
Parameter params must be a Python sequence containing float values.

glFogxv(pname, params)
Parameter params must be a Python sequence containing integer values.

glGenTextures(n)
The generated texture names are returned in a Python tuple.

glGetIntegerv(pname)
The values are returned in a Python tuple.

glGetString(name)
The value is return as a Python string.

glLightModelfv(pname, params)
Parameter params must be a Python sequence containing float values.

glLightModelxv(pname, params)
Parameter params must be a Python sequence containing integer values.

glLightfv(light, pname, params)
Parameter params must be a Python sequence containing float values.

glLightxv(light, pname, params)
Parameter params must be a Python sequence containing integer values.

glLoadMatrixf(m)
Parameter m must be a Python sequence containing float values. The sequence is flattened before its items
are read.

glLoadMatrixx(m)
Parameter m must be a Python sequence containing integer values. The sequence is flattened before its
items are read.

glMaterialfv(face, pname, params)
Parameter params must be a Python sequence containing float values.

glMaterialxv(face, pname, params)
Parameter params must be a Python sequence containing integer values.

glMultMatrixf(m)
Parameter m must be a Python sequence containing float values. The sequence is flattened before its items
are read.

glMultMatrixx(m)
Parameter m must be a Python sequence containing integer values. The sequence is flattened before its
items are read.

glNormalPointer(type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.
gles.array objects require less processing and can be therefore slightly faster. If gles.array object

40 Chapter 3. User Interface and Graphics

is used, the type of its data is ignored and type is used instead.

glNormalPointerb(sequence)
Special Python version of glNormalPointer that uses type GL_BYTE and stride 0.

glNormalPointers(sequence)
Special Python version of glNormalPointer that uses type GL_SHORT and stride 0.

glNormalPointerf(sequence)
Special Python version of glNormalPointer that uses type GL_FLOAT and stride 0.

glNormalPointerx(sequence)
Special Python version of glNormalPointer that uses type GL_FIXED and stride 0.

glReadPixels(x, y, width, height, format, type)
The pixel data read is returned in a Python string.

glTexCoordPointer(size, type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.
gles.array objects require less processing and can be therefore slightly faster. If gles.array object
is used, the dimension and type of its data are ignored and size and type are used instead.

glTexCoordPointerb(sequence)
Special Python version of glTexCoordPointer that accepts either a gles.array object or some
other Python sequence object. Other parameters of glTexCoordPointer will be determined as
follows:

•size If sequence is an instance of gles.array, its dimension is used; otherwise the length of
sequence is used.

•type GL_BYTE

•stride 0

glTexCoordPointers(sequence)
Special Python version of glTexCoordPointer that behaves exactly as glTexCoordPointerb
except GL_SHORT is used as type.

glTexCoordPointerf(sequence)
Special Python version of glTexCoordPointer that behaves exactly as glTexCoordPointerb
except GL_FLOAT is used as type.

glTexCoordPointerx(sequence)
Special Python version of glTexCoordPointer that behaves exactly as glTexCoordPointerb
except GL_FIXED is used as type.

glTexEnvfv(face, pname, params)
Parameter params must be a Python sequence containing float values.

glTexEnvxv(face, pname, params)
Parameter params must be a Python sequence containing integer values.

glTexImage2D(target, level, internalformat, width, height, border, format, type, pixels)
Parameter pixels must be either a Python string, a gles.array object, or graphics.Image object.
Python strings are taken as literal data with no conversion. The dimension and type of data in
gles.array objects are ignored: the raw data in the array is used.

Use of graphics.Image objects is limited to only some combinations of format and type. Table A.2
below shows the accepted combinations. To get the best results and performance, the CFbsBitmap object
in the graphics.Image object should be in the equivalent display mode, also shown in the table below.
Otherwise, the CFbsBitmap object will be first converted to the equivalent display mode before reading
its pixel data, which can degrade the visual quality in some cases.

glTexSubImage2D(target, level, xoffset, yoffset, width, height, format, type, pixels)
The handling of pixels is the same as with glTexImage2D.

glVertexPointer(size, type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.

3.7. gles — Bindings to OpenGL ES 41

format type The equivalent display mode
GL LUMINANCE, GL ALPHA GL UNSIGNED BYTE EGray256
GL RGB GL UNSIGNED BYTE EColor16M
GL RGB GL UNSIGNED SHORT 5 6 5 EColor64K

Table 3.1: Legal combinations of format and type with the equivalent Symbian display mode

gles.array objects require less processing and can be therefore slightly faster. If gles.array object
is used, the dimension and type of its data are ignored and size and type are used instead.

glVertexPointerb(sequence)
Special Python version of glVertexPointer that accepts either a gles.array object or some other
Python sequence object. Other parameters of glVertexPointer will be determined as follows:

•size If sequence is an instance of gles.array, its dimension is used; otherwise the length of
sequence is used.

•type GL_BYTE

•stride 0

glVertexPointers(sequence)
Special Python version of glVertexPointer that behaves exactly as glVertexPointerb except
GL_SHORT is used as type.

glVertexPointerf(sequence)
Special Python version of glVertexPointer that behaves exactly as glVertexPointerb except
GL_FLOAT is used as type.

glVertexPointerx(sequence)
Special Python version of glVertexPointer that behaves exactly as glVertexPointerb except
GL_FIXED is used as type.

OpenGL ES 1.1

glBufferData(target, size, data, usage)
Parameter data must be a gles.array object. If size is -1, the in-memory size of data is used in its
place.

glBufferDatab(target, data, usage)
Special Python version of glBufferData that accepts either a gles.array object or some other
Python sequence object for data. If gles.array object is used, its in-memory size in bytes is used as
size. Other sequences are first converted to flat lists of GL_BYTE data by casting. The length of the
resulting sequence in bytes is used as size.

glBufferDataub(target, data, usage)
Special Python version of glBufferData that works exactly like glBufferDatab except
GL_UNSIGNED_BYTE is used instead of GL_BYTE.

glBufferDatas(target, data, usage)
Special Python version of glBufferData that works exactly like glBufferDatab except
GL_SHORT is used instead of GL_BYTE.

glBufferDataus(target, data, usage)
Special Python version of glBufferData that works exactly like glBufferDatab except
GL_UNSIGNED_SHORT is used instead of GL_BYTE.

glBufferDataf(target, data, usage)
Special Python version of glBufferData that works exactly like glBufferDatab except
GL_FLOAT is used instead of GL_BYTE.

glBufferDatax(target, data, usage)
Special Python version of glBufferData that works exactly like glBufferDatab except
GL_FIXED is used instead of GL_BYTE.

42 Chapter 3. User Interface and Graphics

glBufferSubData(target, size, data, usage)
Parameter data must be a gles.array object. If size is -1, the in-memory size of data is used in its
place.

glBufferSubDatab(target, data, usage)
Special Python version of glBufferSubData that accepts either a gles.array object or some other
Python sequence object for data. If gles.array object is used, its in-memory size (in bytes) is used as
size. Other sequences are first converted to flat lists of GL_BYTE data by casting. The length of the
resulting sequence is used as size.

glBufferSubDataub(target, data, usage)
Special Python version of glBufferSubData that works exactly like glBufferSubDatab except
GL_UNSIGNED_BYTE is used instead of GL_BYTE.

glBufferSubDatas(target, data, usage)
Special Python version of glBufferSubData that works exactly like glBufferSubDatab except
GL_SHORT is used instead of GL_BYTE.

glBufferSubDataus(target, data, usage)
Special Python version of glBufferSubData that works exactly like glBufferSubDatab except
GL_UNSIGNED_SHORT is used instead of GL_BYTE.

glBufferSubDataf(target, data, usage)
Special Python version of glBufferSubData that works exactly like glBufferSubDatab except
GL_FLOAT is used instead of GL_BYTE.

glBufferSubDatax(target, data, usage)
Special Python version of glBufferSubData that works exactly like glBufferSubDatab except
GL_FIXED is used instead of GL_BYTE.

glClipPlanef(plane, equation)
Parameter equation must be a Python sequence that contains four float values.

glClipPlanex(plane, equation)
Parameter equation must be a Python sequence that contains four integer values.

glDeleteBuffers(buffers)
Parameter buffers must be a Python sequence that contains integer values.

glDrawTexsvOES(coords)
Parameter coords must be a Python sequence that contains integer values.

glDrawTexivOES(coords)
Parameter coords must be a Python sequence that contains integer values.

glDrawTexfvOES(coords)
Parameter coords must be a Python sequence that contains float values.

glDrawTexfvOES(coords)
Parameter coords must be a Python sequence that contains integer values.

glGenBuffers(n)
The generated buffer names are returned in a Python tuple.

glGetBooleanv(pname)
The values are returned in a Python tuple.

glGetBufferParameteriv(target, pname)
The value is returned as an integer.

glGetClipPlanef(plane)
The values are returned in a Python tuple.

glGetClipPlanef(plane)
The values are returned in a Python tuple.

glGetFixedv(pname)
The values are returned in a Python tuple.

3.7. gles — Bindings to OpenGL ES 43

glGetFloatv(pname)
The values are returned in a Python tuple.

glGetLightfv(light, pname)
The values are returned in a Python tuple.

glGetLightxv(light, pname)
The values are returned in a Python tuple.

glGetMaterialfv(face, pname)
The values are returned in a Python tuple.

glGetMaterialxv(face, pname)
The values are returned in a Python tuple.

glGetTexEnvf(face, pname)
The values are returned in a Python tuple.

glGetTexEnvx(face, pname)
The values are returned in a Python tuple.

glGetTexParameterf(target, pname)
The value is returned as a float.

glGetTexParameterx(target, pname)
The value is returned as an integer.

glMatrixIndexPointerOES(size, type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.
gles.array objects require less processing and can be therefore slightly faster. If gles.array object
is used, the dimension and type of its data are ignored and size and type are used instead.

glMatrixIndexPointerOESub(sequence)
Special Python version of glMatrixIndexPointerOES that accepts either a gles.array object or
some other Python sequence object. Other parameters of glMatrixIndexPointerOES will be
determined as follows:

•size If sequence is an instance of gles.array, its dimension is used; otherwise the length of
sequence is used.

•type GL_UNSIGNED_BYTE

•stride 0

glPointParameterfv(pname, params)
Parameter params must be a Python sequence containing float values.

glPointParameterxv(pname, params)
Parameter params must be a Python sequence containing integer values.

glPointSizePointerOES(type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.
gles.array objects require less processing and can be therefore slightly faster. If gles.array object
is used, the type of its data is ignored and type is used instead.

glPointSizePointerOESf(sequence)
Special Python version of glPointSizePointerOES uses GL_FLOAT as type and 0 as stride.

glPointSizePointerOESx(target, data, usage)
Special Python version of glPointSizePointerOES uses GL_FIXED as type and 0 as stride.

glWeightPointerOES(size, type, stride, sequence)
Parameter sequence must be either a gles.array object or some other Python sequence object.
gles.array objects require less processing and can be therefore slightly faster. If gles.array object
is used, the dimension and type of its data are ignored and size and type are used instead.

glWeightPointerOESf(sequence)
Special Python version of glWeightPointerOES that accepts either a gles.array object or some
other Python sequence object. Other parameters of glWeightPointerOES will be determined as

44 Chapter 3. User Interface and Graphics

follows:

•size If sequence is an instance of gles.array, its dimension is used; otherwise the length of
sequence is used.

•type GL_FLOAT

•stride 0

glWeightPointerOESx(sequence)
Special Python version of glWeightPointerOES that behaves exactly as glWeightPointerOESf
except GL_FIXED is used as type.

3.8 glcanvas — UI Control for Displaying OpenGL ES Graphics

The glcanvas module provides a UI control, GLCanvas, for displaying OpenGL ES graphics. GLCanvas
component is similar to the appuifw Canvas component that supports Symbian OS -level drawing.

Internally GLCanvas uses EGL for displaying the OpenGL ES graphics. EGL, as OpenGL ES, is a standard
API defined by the Khronos Group (www.khronos.org). Specifically, GLCanvas uses an EGL window surface,
which supports double-buffered rendering. It is possible to affect selection of the EGL config that is used to
create the window surface; for details, see the documentation of the GLCanvas constructor.

GLCanvas instances also hold the OpenGL ES context object, which together with the surface, are needed for
rendering. When one wants to render with a specific OpenGL ES context to a specific surface, they need to be
made current. This also applies to GLCanvas, which has the makeCurrent method for this purpose.
Generally, calling makeCurrent has to be done only if multiple GLCanvas objects are used in the same
program, as each GLCanvas object is automatically made current when it is created and it remains current until
it is destroyed or makeCurrent of some other GLCanvas object is called.

class GLCanvas(redraw callback, [event callback=None, resize callback=None, attributes=None])
Constructs a new GLCanvas object that can be used as a UI control for displaying OpenGL ES graphics.
Parameters redraw callback, event callback, and resize callback have the same meaning as with
appuifw module Canvas. Using redraw callback to specify the OpenGL ES drawing is preferred as it
will be automatically called by drawNow method.

Parameter attributes can be used to specify attributes used in EGL config selection. It must be a Python
dictionary where keys are EGL attribute names (which are defined in the glcanvas module) and values
are integers defining the desired attribute values. Unless specified in attributes, EGL_BUFFER_SIZE is
set to value based on the display mode of the window owned by the underlying CCoeControl object and
EGL_DEPTH_SIZE is set to 16. Attributes specified in attributes are given to eglChooseConfig.
Refer to the EGL specification for a detailed list of config attributes and explanation of how the selection
of EGL configs works.

The new GLCanvas object will be made current when the constructor returns so makeCurrent does
not have to be called before starting to use OpenGL ES calls.

bind(key code, c [, ((x1, y1), (x2, y2))])
Sets a callback to be called when a specific key is pressed or pointer event occurs. Parameter key code
should be one of the standard Symbian key codes defined in key_codes. Parameter c must be a
callable object. The optional two co-ordinate tuple corresponds to the top left and bottom right points
of the rectangle to be monitored for pointer events. This argument is ignored for Key events.
For different bind scenarios refer Canvas’s bind method.

drawNow()
Calls the redraw callback (if set) and then calls eglSwapBuffers to render and display the
OpenGL ES graphics.

makeCurrent()
Makes this GLCanvas object current, meaning that it will be used to display the results of the
subsequent OpenGL ES calls. In EGL terms this means that the EGL context and surface held by this
object will be passed to eglMakeCurrent. Using makeCurrent makes it possible to use several
GLCanvas objects in a single application: the receiver of the OpenGL ES calls can be switched with
makeCurrent easily.

3.8. glcanvas — UI Control for Displaying OpenGL ES Graphics 45

3.9 sensor — Module to access the device sensors.

3.9.1 Module for devices that support S60 Sensor API

The Sensor module offers direct access to a device’s physical sensors. It has been tested with the following
sensors:

• acceleration sensor: raises events about the 3-axes acceleration of the device

• tapping sensor: raises an event when the device was tapped twice on the front side

• rotation sensor: raises an event based on the orientation of the device.

Instead of passing on raised events, event filtering is also supported. Two examples of using an event filter are
also provided by the Sensor module, namely the class OrientationEventFilter and
RotEventFilter. Both filters can be used to raise events when the orientation changes in the device (For
example, when it is turned to the right). The support is device dependent. For example, Nokia 5500 supports
OrientationEventFilter and Nokia N95 supports RotEventFilter.

Note: The module Sensor is available from S60 3rd Edition onwards. (inclusive).

Module Level Functions

On the module level, Sensor provides the following functions:

sensors()
Returns a dictionary containing all available sensors. The format of the dictionary is as follows:

{
{ ’sensor name 1’: { ’id’: sensor_id_1, ’category’: category_id_1 } },
{ ’sensor name 2’: { ’id’: sensor_id_2, ’category’: category_id_2 } },
...

}

with sensor_id_X and category_id_X being integer values.

Constants

The following orientation constants are used by the OrientationEventFilter class. Callbacks
which have been connected to a Sensor object that utilises the OrientationEventFilter event filter will
receive one of these constants as an argument upon a detected orientation change. The names of the constant are
the side of the device that is currently turned upwards from your point of view. (For example FRONT means that
the device is lying on its back - its front side is turned upwards.)

orientation.TOP
Represents the orientation where the device is held upwards.

orientation.BOTTOM
Represents the orientation where the device is held upside down.

orientation.LEFT
Represents the orientation where the side of the device that is left of the display is turned downwards.

orientation.RIGHT
Represents the orientation where the side of the device that is right of the display is turned downwards.

orientation.FRONT
Represents the orientation where the device is lying on its back that is, the front side points upwards.

orientation.BACK
Represents the orientation where the device is lying on its front that is, the back side points upwards.

46 Chapter 3. User Interface and Graphics

Classes

The following classes are provided by the Sensor module:

class Sensor
The Sensor class represents a physical sensor which delivers (possibly filtered) events. By default, events
are not filtered. A filter can be applied by using the set_event_filter method. An example for an
event filter is given by OrientationEventFilter, which can be applied to an acceleration sensor of
the device.

In case different filters must be used for the same physical sensor, different Sensor objects have to be
created for the same physical sensor.

__init__(sensor id, category id)
Initialises the Sensor object. sensor_id and category_id must represent a valid sensor id
and category id, respectively. This means that the ids passed on to __init__ must also appear in
the dictionary returned by the sensors function. In case sensor_id and category_id do not
represent a valid sensor, the connect method will raise an exception.

connect(callback)
This method connects the sensor to the given callback. A sensor can only be connected to one
callback, so this will destroy any pre-existing connection to another callback. If an event filter has
been set, the events passed on to callback will first pass this event filter of the Sensor object. If
the connection is properly established, this method returns 1, otherwise 0. Note: The connection can
be established also if the callback does not exist or cannot be called for any other reason.

disconnect()
Disconnects this callback connection of the Sensor object. After a successful call to this method, a
callback that has been previously connected through connect will not receive any more events. If a
connection existed and is successfully removed, this method returns 1, otherwise 0.

connected()
Retrieves this Sensor object’s connection status. Returns True if the sensor is connected, False
otherwise.

set_event_filter(event filter)
Sets an event filter for this Sensor object. After the event filter has been successfully installed, the
connected callback of the Sensor object will receive only events that have passed the filter.
event_filter must be derived from EventFilter in order to function properly. If a callback
connection has already been established before calling this method, the connection will be
re-established after the event filter has been installed.

class EventFilter
The EventFilter class provides a generic interface for event filters. The default implementation only
passes events on, that is, events are not filtered. Classes deriving from EventFilter can decide if an
event should be delivered at all as well as they can alter the data that is passed on to the callback.

callback
This is where the callback of the event filter is stored. In case, the EventFilter object is used
together with a Sensor object, the Sensor object will handle correct setting of this variable.

__init__()
Initialises the event filter object. The callback member is initialised to None.

__del__()
Destructs the event filter object. This method calls cleanup, which can be overridden by deriving
classes to clean up resources.

event(data)
This method is the place where event filtering takes place, and hence this method should be
overridden by deriving classes. Overridden event methods can deliver their own data to the
callback, the data delivered can be data or any other set of data. In case the event is decided to be
delivered, overriding instances must call self.callback, which by default takes one argument.

cleanup()
Cleans up any resources needed by the event filter. The default implementation does not need this
feature. This method is called by the destructor __del__.

3.9. sensor — Module to access the device sensors. 47

class OrientationEventFilter
Derived from EventFilter. This event filter is meant to be used together with the acceleration sensors
of the device. Note that it is not required to use it with any other sensor type. It generates events when the
devices orientation changes. For example, if it is turned from the upright position to lying on the back side.
If an OrientationEventFiler is used with a Sensor object, the callback of the Sensor object
will not receive the raw acceleration data as an argument, but only one of the orientation constants,
representing the new orientation of the device. In case the algorithm needs calibration on the device to be
used, you must check the OrientationCalibration variables in the file sensor.py.

__init__()
Initialises the OrientationEventFilter object.

event(sensor val)
Overridden method. Filters 3-axis acceleration events such that it detects orientation changes. Only
upon detection of such an orientation change, the callback is invoked. The argument passed to the
callback is a value from the orientation constants of this module.

cleanup()
Cleans up the timer resource of this filter. This will be called by destructor of the EventFilter
class.

class RotEventFilter
Derived from EventFilter.

This event filter generates events when the devices orientation changes. For example, if it is turned from
the left side up position to right side up position. This sensor is resident. For example, in Nokia N95.

event(sensor val)
Overridden method. Upon detection of an orientation change, the callback is invoked. The argument
passed to the callback is a value from this module’s orientation constants.

3.9.2 Module for devices that support S60 Sensor FrameWork

The Python S60 sensor module supports access of sensors on the devices that have S60 Sensor Framework
libraries. The S60 Sensor Framework is introduced in S60 Fifth Edition. It is also backported to S60 Third
Edition, Feature Pack 2 for some mobile devices and to the Nokia E66 device, which is an S60 3rd Edition,
Feature Pack 1 device with sensor APIs based on the S60 Sensor Framework.

The sensor module offers direct access to physical sensors of a device. The following sensor channels are
supported by the sensor module, provided the device supports them:

• Accelerometer XYZ sensor channel

• Rotation sensor channel

• Orientation sensor channel

• Accelerometer double-tap sensor channel

• Proximity monitor sensor channel

• Ambient light sensor channel

• Magnetic North sensor channel

• Magnetometer XYZ sensor channel.

The following table lists the sensors available on different S60 devices:

These sensors are mapped to a class using which the sensor channel data can be accessed. To access a particular
sensor data, an object of the respective class is created. Then the data callback function can be set using the
set_callback() method. To start and stop receiving updates the start_listening() and
stop_listening() methods can be used.

48 Chapter 3. User Interface and Graphics

Accelerometer
double tap

Accelerometer
XYZ

Orientation Rotation Ambient
light

Magnetic
north

Proximity
monitor

Magnetometer
XYZ

S60 plat-
form

N85 x x x x NA NA NA NA 3rdFP2
E66 x x x x NA NA NA NA 3rdFP1
N96 x x x x NA NA NA NA 3rdFP2
E75 x x x x NA NA NA NA 3rdFP2
6720 NA x x NA x x NA NA 3rdFP2
5800 x x x x x NA x NA 5thEd
6210 x x x x NA x NA x 3rdFP2
6710 x x x x NA x NA x 3rdFP2
E55 x x NA x x x NA x 3rdFP2

Module Level Functions

List Channels
Function signature: list_channels

This returns a list of dictionaries containing all the available sensors on the device. The returned dictionary has
the following format:

[
{’id’: channel id, ’type’: channel type, ’name’: channel name}

{’id’: channel id, ’type’: channel type, ’name’: channel name}

....
]

where, channel_id, channel_type, and channel_name have strings as values of the respective
channels.

Query Logical Name
Function signature : get_logicalname(<DataLookupClass>, value)

This function can be used for querying the logical name based on value. The file sensor defs.py has the mapping
of different sensor properties to their respective hex/decimal values. The following table contains the sensor
classes, supported by get_logicalname() and the respective data lookup classes.

Sensor Class DataLookupClass
ProximityMonitor ProximityState
OrientationData DeviceOrientation
AmbientLightData AmbientLightData
AccelerometerDoubleTappingData AccelerometerDirection

Base Class

The base class to all types of sensor class is _Sensor. This class provides the methods: set_callback,
start_listening, and stop_listening that are common to all the sensor class objects. The individual
sensor class objects must be used for a specific sensor.

Object Creation
Function signature: __init__([data_filter=None])

The data_filter argument is only applicable for *XYZAxisData and RotationData sensor classes.

Possible Values: MedianFilter(), LowPassFilter()

3.9. sensor — Module to access the device sensors. 49

• If nothing is passed then the data remains in its present condition without any filtering.

• MedianFilter and LowPassFilter are standard noise filtering algorithms that provide a smoother
form of a signal removing the short-term oscillations, leaving only the long-term trend.

Set Data and Error Callback
Function signature: set_callback(data_callback, [error_callback=None])

Sets the data and error callback function. The error callback function will get an argument that contains a map
with Channel ID and error string. The data callback function is not passed with any arguments.

Open and Listen
Function signature: start_listening()

Opens the sensor channel and start listening. Returns True on success and False on failure.

Stop and Close
Function signature: stop_listening()

Stop listening to the open channel and close the channel. To start receiving updates again the
start_listening method can be called on the same sensor object.

Set/Get Sensor Channel Property

Each sensor class has methods which can be used to set or get the sensor channel properties like data rate,
measure range, axis active etc...

Class Attributes

The sensor classes have one or more attributes which contains the data returned by the respective sensor. These
attributes will be set before the registered data callback function is called and can be accessed using the
respective sensor class object.

class AccelerometerXYZAxisData

• Detects movement gestures, such as moving the device up or down.

• Inherits from the _Sensor base class.

Class Attributes

• x: X-axis value

• y: Y-axis value

• z: Z-axis value

Set/Get Property

This sensor class provides additional functions that can be used to set or get some of the properties specific to this
sensor.

The following table lists the set/get properties of the sensor class:

Example

50 Chapter 3. User Interface and Graphics

Set/Get properties Description
get_available_data_rates() Returns the data rates that can be used for this channel.
set_data_rate(data_rate) Sets the data rate to be used for this channel.
get_data_rate() Returns the current data rate for this channel.
set_measure_range(measurerange) Sets the measure range. Pass 0 to set +-2g, 1 for +-8g
get_measure_range() Returns the current measure range. Returns 0 for +-2g, 1 for +-8g

from sensor import *
import e32
import time

class DemoApp():

def __init__(self):
self.accelerometer = \

AccelerometerXYZAxisData(data_filter=LowPassFilter())
self.accelerometer.set_callback(data_callback=self.my_callback)
self.counter = 0

def my_callback(self):
For stream sensor data the callback is hit 35 times per sec(On 5800).
The device cannot handle resource hungry operations like print in the
callback function for such high frequencies. A workaround is to
sample the data as demonstrated below.
if self.counter % 5 == 0:

print "X:%s, Y:%s, Z:%s" % (self.accelerometer.x,
self.accelerometer.y, self.accelerometer.z)

print "Timestamp:", self.accelerometer.timestamp
self.counter = self.counter + 1

def run(self):
self.accelerometer.start_listening()

if __name__ == ’__main__’:
d = DemoApp()
d.run()
e32.ao_sleep(5)
d.accelerometer.stop_listening()
print "Exiting Accelorometer"

class AccelerometerDoubleTappingData

• Detects a double-tap on the device where the taps occur in quick succession, in the same direction.

• Inherits from the _Sensor base class.

Class Attribute

Direction: Hex value indicating the tap direction. The direction can be determined in human readable form using
get_logicalname API and class name as AccelerometerDirection.

Set/Get Property

This sensor class provides additional functions that can be used to set or get some of the properties specific to this
sensor.

3.9. sensor — Module to access the device sensors. 51

The following table lists the set/get properties of the sensor class:

Set/Get properties Description
get_axis_active() Returns x, y, z values: 1 if axis is active else 0.
set_axis_active([x=None, y=None,
z=None])

Sets one or more axis as active. Pass 1 to set the axis and 0 to disable it.

get_properties() Returns a dictionary with "DoubleTapThreshold",
"DoubleTapDuration", "DoubleTapLatency",
"DoubleTapInterval" as the keys and their respective val-
ues.

set_properties([DoubleTapThreshold
= None, DoubleTapDuration =
None, DoubleTapLatency = None,
DoubleTapInterval = None])

Sets the tap related properties.

Example

from sensor import *
import e32

class DemoApp():

def __init__(self):
self.doubletap = AccelerometerDoubleTappingData()
self.doubletap.set_axis_active(x=0, y=1, z=1)
print "Active Axis are: ", self.doubletap.get_axis_active()
self.doubletap.set_callback(data_callback=self.my_callback)

def my_callback(self):
print "Raw Direction value:", self.doubletap.direction
print "Direction:", get_logicalname(AccelerometerDirection,

self.doubletap.direction)
print "Timestamp:", self.doubletap.timestamp

def run(self):
self.doubletap.start_listening()

if __name__ == ’__main__’:
d = DemoApp()
d.run()
e32.ao_sleep(15)
d.doubletap.stop_listening()
print "Exiting Double Tap"

class MagnetometerXYZAxisData

• Indicates the strength of the geomagnetic flux density in the X, Y and Z axes.

• Only calibrated axis data is exposed right now and not raw data.

• Inherits from the _Sensor base class.

Class Attributes

• x : X-axis value

52 Chapter 3. User Interface and Graphics

• y : Y-axis value

• z : Z-axis value

• calib level: Indicates the calibration level.

– Possible values:
∗ 0 - Not calibrated
∗ 1 - Low calibration
∗ 2 - Medium calibration
∗ 3 - High accuracy

Example

from sensor import *
import e32

class DemoApp():

def __init__(self):
self.magnetometer = \

MagnetometerXYZAxisData(data_filter=LowPassFilter())
self.magnetometer.set_callback(data_callback=self.my_callback)
self.counter = 0

def my_callback(self):
For stream sensor data the callback is hit 35 times per sec(On 5800).
The device cannot handle resource hungry operations like print in the
callback function for such high frequencies. A workaround is to
sample the data as demonstrated below.
if self.counter % 5 == 0:

print "Calib:", self.magnetometer.calib_level
print "X:%s, Y:%s, Z:%s" % (self.magnetometer.x,

self.magnetometer.y, self.magnetometer.z)
print "Timestamp:", self.magnetometer.timestamp

self.counter = self.counter + 1

def run(self):
self.magnetometer.start_listening()

if __name__ == ’__main__’:
d = DemoApp()
d.run()
e32.ao_sleep(5)
d.magnetometer.stop_listening()
print "Exiting MagnetometerAxis"

class MagneticNorthData

• Indicates the number of degrees between the device and magnetic north.

• Inherits from the _Sensor base class.

Class Attribute

Azimuth: 0 to 359 clockwise degrees from magnetic north.

3.9. sensor — Module to access the device sensors. 53

Example

from sensor import *
import e32

class DemoApp():

def __init__(self):
self.magnetic_north = MagneticNorthData()
self.magnetic_north.set_callback(data_callback=self.my_callback)

def my_callback(self):
azimuth = str(self.magnetic_north.azimuth)
print "Azimuth:", azimuth
print "Timestamp:", timestamp

def run(self):
self.magnetic_north.start_listening()

if __name__ == ’__main__’:
d = DemoApp()
d.run()
e32.ao_sleep(1)
d.magnetic_north.stop_listening()
print "Exiting MagneticNorth"

class AmbientLightData

• Indicates the current light level.

• Inherits from the _Sensor base class.

Class Attribute

Ambient light: 0 to 100 percent light. To get the logical names use get_logicalname API with class name
as AmbientLightData.

Example

54 Chapter 3. User Interface and Graphics

from sensor import *
import e32

class DemoApp():

def __init__(self):
self.ALS = AmbientLightData()
self.ALS.set_callback(data_callback=self.my_callback)

def my_callback(self):
print ’ALS:’, get_logicalname(AmbientLightData,

self.ALS.ambient_light)
print ’Timestamp:’, self.ALS.timestamp

def run(self):
self.ALS.start_listening()

if __name__ == ’__main__’:
d = DemoApp()
d.run()
e32.ao_sleep(30)
d.ALS.stop_listening()
print "Exiting Ambient Light"

class ProximityMonitor

• Indicates how close the device is to your hand or ear.

• Inherits from the _Sensor base class.

Class Attribute

Proximity state: The possible values are 0, 1 and 2. To get the logical names of these values use
get_logicalname API with ProximityState as the class name.

Example

3.9. sensor — Module to access the device sensors. 55

from sensor import *
import e32

class DemoApp():

def __init__(self):
self.proxi = ProximityMonitor()
self.proxi.set_callback(data_callback=self.my_callback)

def my_callback(self):
print ’Proxi:’, get_logicalname(ProximityState,

self.proxi.proximity_state)
print ’Timestamp:’, self.proxi.timestamp

def run(self):
self.proxi.start_listening()

if __name__ == ’__main__’:
d = DemoApp()
d.run()
e32.ao_sleep(10)
d.proxi.stop_listening()
print "After Stop Listening"
e32.ao_sleep(5)
print "Exiting Proximity"

class OrientationData

• Indicates the orientation of the device, for example: display up or down.

• Inherits from the _Sensor base class.

Class Attribute

device orientation: Values range from -1 to 6. To determine the logical names of these values
get_logicalname API can be used with class name as DeviceOrientation.

Example

56 Chapter 3. User Interface and Graphics

from sensor import *
import e32

class DemoApp():

def __init__(self):
self.orientation = OrientationData()
self.orientation.set_callback(data_callback=self.my_callback)

def my_callback(self):
print ’Orientation:’, get_logicalname(DeviceOrientation,

self.orientation.device_orientation)
print ’Timestamp:’, self.orientation.timestamp

def run(self):
self.orientation.start_listening()

if __name__ == ’__main__’:
d = DemoApp()
d.run()
e32.ao_sleep(10)
d.orientation.stop_listening()
print "Exiting Orientation"

class RotationData

• Detects the rotation of the device about each axis.

• Inherits from the _Sensor base class.

Class Attribute

• x: X-axis value

• y: Y-axis value

• z: Z-axis value

Example

3.9. sensor — Module to access the device sensors. 57

from sensor import *
import e32

class DemoApp():

def __init__(self):
self.rotation = RotationData()
self.rotation.set_callback(data_callback=self.my_callback)
self.counter = 0

def my_callback(self):
For stream sensor data the callback is hit 35 times per sec(On 5800).
The device cannot handle resource hungry operations like print in the
callback function for such high frequencies. A workaround is to
sample the data as demonstrated below.
if self.counter % 5 == 0:

print "X:%s, Y:%s, Z:%s" % (self.rotation.x,
self.rotation.y, self.rotation.z)

print "Timestamp:", self.rotation.timestamp
self.counter = self.counter + 1

def run(self):
self.rotation.start_listening()

if __name__ == ’__main__’:
d = DemoApp()
d.run()
e32.ao_sleep(5)
d.rotation.stop_listening()
print "Exiting Rotation"

58 Chapter 3. User Interface and Graphics

CHAPTER

FOUR

Audio and Communication Services

4.1 audio — An audio related services package

The audio module enables recording and playing audio files and access to device text-to-speech engine. The
audio module supports all the formats supported by the device, typically: WAV, AMR, MIDI, MP3, AAC, and
Real Audio1. For more information on the audio types supported by different devices, see the Forum Nokia Web
site [5] and S60 Platform Web site [6].

The following Sound class static methods are defined in the audio module:

Sound.open(filename)
Returns a new initialized Sound object with the named file opened. Note that filename should be a full
Unicode path name and must also include the file extension, for example u’c:\\foo.wav’.

The following data items for state information are available in audio:

ENotReady
The Sound object has been constructed but no audio file is open.

EOpen
An audio file is open but no playing or recording operation is in progress.

EPlaying
An audio file is playing.

ERecording
An audio file is being recorded.

The following data item is provided for continuous playback of an audio file:

KMdaRepeatForever
Possible value for times parameter in open.

The following method is available in the audio module:

say(text, prefix=audio.TTS PREFIX)
Passes the text to the device text-to-speech engine. The default prefix is the text-to-speech prefix
"(tts)".

text should be either Unicode or a UTF-8 encoded plain string. The speech synthesizer pronounces the
text according to the current device language.

4.1.1 Sound Objects

class Sound
Sound objects have the following functions:

play([times=1, interval=0, callback=None])
Starts playback of an audio file from the beginning. Without the parameters times and interval it

1The dynamically loaded audio codec for the sound file is based on the MIME-type information inside the audio file and file extension.

59

plays the audio file one time. times defines the number of times the audio file is played, the default
being 1. If the audio file is played several times, interval gives the time interval between the
subsequent plays in microseconds.
The optional callback is called when the playing starts and when the end of the sound file is reached.
The callback should take three parameters: the previous state, the current state and the possible error
code. The possible states given as parameters to the callback are data items in the module audio.
Other issues:
•Calling play(audio.KMdaRepeatForever) will repeat the file forever.
•If an audio file is played but not stopped before exiting, the Python script will leave audio

playing on; therefore stop needs to be called explicitly prior to exit.
•Currently the module does not support playing simultaneous audio files, calling play to a

second Sound instance while another audio file is playing, stops the earlier audio file and starts
to play the second Sound instance.
•Calling play while a telephone call is ongoing plays the sound file to uplink. In some devices

the sound file is also played to the device speaker.
•Calling play when already playing or recording results in RuntimeError. Calling stop

prior to play will prevent this from happening.

stop()
Stops playback or recording of an audio file.

record()
Starts recording audio data to a file. If the file already exists, the operation appends to the file. For
Nokia devices, WAV is typically supported for recording. For more information on the audio types
supported by different devices, see the Forum Nokia Web site [5] and S60 Platform Web site [6].
Other issues:
•Calling record while a telephone call is ongoing starts the recording of the telephone call.
•Calling record when already playing or recording results in RuntimeError. Calling stop

prior to record will prevent this from happening.

close()
Closes an opened audio file.

state()
Returns the current state of the Sound type instance. The different states (constants) are defined in
the audio module. The possible states2 are:
•ENotReady

The Sound object has been constructed but no audio file is open.
•EOpen

An audio file is open but no playing or recording operation is in progress.
•EPlaying

An audio file is playing.
•ERecording

An audio file is being recorded.

max_volume()
Returns the maximum volume of the device.

set_volume(volume)
Sets the volume. If the given volume is negative, then the volume is set to zero which mutes the
device. If the volume is greater than max_volume, then max_volume is used.

current_volume()
Returns the current volume set.

duration()
Returns the duration of the file in microseconds.

set_position(microseconds)
Set the position for the playhead.

current_position()
Returns the current playhead position in microseconds.

2Descriptions for these options are based on information found in S60 SDK documentation [4].

60 Chapter 4. Audio and Communication Services

4.2 telephone — Telephone services

This module provides an API to a telephone.

Since the users of the device can also hang-up the phone explicitly, they might affect the current status of the call.
In addition, using this extension in an emulator has no effect since no calls can be connected.

The telephone module has the following functions:

dial(number)
Dials the number set in number. number is a string, for example u’+358501234567’ where ’+’ is the
international prefix, ’358’ is the country code, ’50’ is the mobile network code (or the area code), and
’1234567’ is the subscriber number. If there is an ongoing phone call prior to calling dial from
Python, then the earlier call is put on hold and a new call is established. Calling dial multiple times
when, for example, the first call has been answered and a line has been established results in subsequent
calls not being connected.

hang_up()
Hangs up if a call initiated by dial is in process. If this call has already been finished, SymbianError:
KErrNotReady is raised.

incoming_call()
Wait for incoming call, returns immediately. If a call arrives, answer can be called to answer the call.
Without the invocation of function incoming_call, the function answer has no effect.

answer()
Answers an incoming call - see also incoming_call.

call_state(callable)
The callable will be called when there are changes in the telephone line (lines) in the device. The
argument for the call is a tuple with first item the possible new state and the second item, the possible
incoming call number as a Unicode string.

The possible states in the tuple are defined as telephone module constants.

The following data items for state information are available in telephone3:

EStatusUnknown
Indicates that the status is unknown.

EStatusIdle
Idle line status (no active calls).

EStatusDialling
Call dialling status.

EStatusRinging
Call ringing status.

EStatusAnswering
Call answering status.

EStatusConnecting
Call connecting status.

EStatusConnected
Call connected status.

EStatusReconnectPending
Call is undergoing temporary channel loss and it may or may not be reconnected.

EStatusDisconnecting
Call disconnecting status.

EStatusHold
Call on hold.

3The descriptions are taken from the S60 SDK documentation [4]

4.2. telephone — Telephone services 61

EStatusTransferring
Call is transferring.

EStatusTransferAlerting
Call in transfer is alerting the remote party.

4.3 messaging — A messaging services package

The messaging module offers APIs to messaging services. Currently, the messaging module has functions:

sms_send(number, msg, [encoding=’7bit’, callback=None, name=””])
Sends an SMS message with body text msg4 (Unicode)to telephone number number (string).

The optional parameter encoding is used to define encoding in the message. The parameter values can be
’7bit’, ’8bit’ or ’UCS2’.

The optional parameter callback is invoked with the current status of the send operation as parameter. The
possible states are data items in the module messaging. Invoking another send while a previous send
request is ongoing will result in RuntimeError being raised.

If the callback is not given, the sms_send function will block until the message in the queue is either
deleted or the sending has failed5.

The optional parameter name will be shown in the sent item message entry as recipient’s name after
successfully sending message to number. If this parameter is not specified, then the recipient’s phone
number will be shown in the sent item message entry6.

mms_send(number, msg, [attachment=None])
Sends an MMS message with body text msg (Unicode) to telephone number number (string). The optional
parameter attachment is full path to e.g. image file attached to the message.

The following data items for SMS sending state information are available in the module messaging:

ECreated

EMovedToOutBox

EScheduledForSend

ESent
The SMS message has been sent.

EDeleted
The SMS message has been deleted from device’s outbox queue. The sms_send operation has finalized
and subsequent SMS sending is possible.

EScheduleFailed

ESendFailed
This state information is returned when the SMS subsystem has tried to send the message several times in
vain. The sms_send operation has finalized and subsequent SMS sending is possible.

ENoServiceCentre
This state information is returned by the SMS subsystem in S60 3.x emulator. In emulator this indicates
that the sms_send operation has finalized and subsequent SMS sending is possible.

EFatalServerError

The underlying messaging subsystem in S60 devices might give error messages to the user if the device is not
connected to a network while trying to send a message – An ”SMS send failed!” note is a common error message.

4The maximum length of a message that can be sent using sms send function is either 39015 characters or Max network capacity whichever
is lower.

5Please note that this blocking might last for several minutes and hence supplying the callback might be more suitable in many cases.
6The name can be of maximum 60 characters and will be shown in the sent item message entry as specified by sender without making any

check in the contact database.

62 Chapter 4. Audio and Communication Services

When sending messages in offline-mode or with no network connection these messages are actually added to an
outgoing message queue and they might be sent if the device is later on connected to a suitable network7. This
occurs despite the possibly misleading error messages. The current network conditions can be checked e.g. with
sysinfo.active_profile() and sysinfo.signal_bars() invocations.

The following is example code for state information processing with sms_send operation:

>>> import messaging
>>>
>>> def cb(state):
... if state==messaging.ESent:
... print "**Message was sent**"
... if state==messaging.ESendFailed:
... print "**Something went wrong - Truly sorry for this**"
...
>>> messaging.sms_send("1234567", "Hello from PyS60!", ’7bit’, cb, "Mary")
>>> **Message was sent** # This is printed from the callback

4.4 inbox — Interface to device inbox

The inbox module offers APIs to device inbox, outbox, sent and drafts folders. Currently, the inbox module
supports only SMS handling and notifications of incoming messages to the device inbox.

class Inbox([folder type])
Create an Inbox object.

The optional parameter folder_type defines the type of the folder to which the created Inbox object
has access to. The default is the device’s inbox folder, inbox.EInbox.

The following data items are available in the inbox module to define the type of the folder for Inbox objects:

EInbox
The device’s inbox folder.

EOutbox
The device’s outbox folder.

ESent
The sent messages folder.

EDraft
The draft messages folder.

4.4.1 Inbox Objects

Inbox objects have the following functions:

sms_messages()
Returns a list of SMS message IDs in device inbox.

content(sms id)
Retrieve the SMS message content in Unicode.

time(sms id)
Retrieve the SMS message time of arrival in seconds since epoch.

address(sms id)
Retrieve the SMS message sender address in Unicode.

7Note also that prior this the user of the device can explicitly delete the messages from the native messaging application. The amount of
resending is approx. 4 times – After this the sending operation is cancelled and the user of the device will see a visual cue of the failure in the
status pane.

4.4. inbox — Interface to device inbox 63

delete(sms id)
Delete the SMS message from inbox.

unread(sms id)
Returns the status (1=unread, 0=read) of the SMS with id.

set_unread(sms id, status)
Set the status (1=unread, 0=read) of the SMS with id.

bind(callable)
Bind a callback to receive new message events in device inbox. When a new message arrives to the device
inbox the callback gets called with the received message ID. The received message can be other than an
SMS message.

If the message received is deleted immediately after e.g. checking the message content, the ”new message”
sound and dialog are not activated. This functionality might be useful in notification type of applications.

Examples:

>>> import inbox
>>> i=inbox.Inbox() # Give inbox.ESent as parameter for sent SMSes
>>> m=i.sms_messages()
>>> i.content(m[0])
u’foobar’
>>> i.time(m[0])
1130267365.03125
>>> i.address(m[0])
u’John Doe’
>>> i.delete(m[0])
>>>

>>> import inbox
>>> id=0
>>> def cb(id_cb):
... global id
... id=id_cb
...
>>> i=inbox.Inbox()
>>> i.bind(cb)
>>> # Send an SMS to your inbox here. The "id" gets updated
>>> i.address(id)
u’John Doe’
>>> i.content(id)
u’print 1’
>>>

4.5 location — GSM location information

The location module offers APIs to location information related services. Currently, the location has one
function:

Note: Location module requires capabilities ReadDeviceData, ReadUserData and Location.

gsm_location()
Retrieves GSM location information: Mobile Country Code, Mobile Network Code, Location Area Code,
and Cell ID. A location area normally consists of several base stations. It is the area where the terminal can
move without notifying the network about its exact position. mcc and mnc together form a unique
identification number of the network into which the phone is logged.

64 Chapter 4. Audio and Communication Services

4.5.1 Examples

Here is an example of how to use the location package to fetch the location information:

>>> import location
>>> print location.gsm_location()

4.6 positioning — Simplified interface to the position information

The positioning module provides basic access to the S60 position information 8. The module can be e.g.
used to access position information provided by external Bluetooth GPS-devices and by built-in GPS-receivers9

from S60 devices.

The module offers a large amount of information (cost of service, device power consumption etc.) about
accessible positioning devices (like GPS-modules), position, course, accuracy and satellite information
(depending on the position device used) and much more. This module can also be used to obtain device/vendor
specific extended information.

Note: The module position requires Location capability.

The following data items are available in positioning:

POSITION_INTERVAL
The time interval (in microseconds) between the position function callback invocation. The default
value set is 1000000 microseconds (= 1 second)

The positioning module has the following functions (for examples of the values returned, see Section 4.6.1):

modules()
Get information about available positioning modules.

default_module()
Get default module id.

module_info(module id)
Get detailed information about the specified module.

select_module(module id)
Select a module.

set_requestors(requestors)
Set the requestors of the service (at least one must be set).

position(course=0,satellites=0,callback=None, interval=positioning.POSITION INTERVAL, partial=0)
By default, returns the position information in a dictionary. With course and/or satellites set to 1,
information about course and satellites is also returned (if available).

With no callback provided, this call blocks until the position information is available.

The call returns immediately if a valid callback function is given. This callback function is then invoked
with the specified time interval (in microseconds) in between the invocations. The callback function is
called with the the current position information as parameter.

If partial update is set to 1, the function might return e.g. information about satellites before the final
location fix has been calculated.

For an example of the dictionary returned and the detailed keys, see Section 4.6.1.

stop_position()
Stops an ongoing position request.

8For details, please see the Location Acquisition API in the S60 API documentation. The Location Acquisition API gathers different
positioning technologies together to be used through a consistent interface.

9For more information on GPS, please see http://en.wikipedia.org/wiki/Global Positioning System.

4.6. positioning — Simplified interface to the position information 65

http://en.wikipedia.org/wiki/Globalunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip Positioningunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip System

last_position()
Get last position information. This method returns the cached position information if it is available.

4.6.1 Example

The following example (invoked in a Nokia N95 device) demonstrates how to use the Python positioning
module to obtain information about the positioning technologies in the device:

>>> import positioning
>>> positioning.modules()
[{’available’: 0, ’id’: 270526873, ’name’: u’Bluetooth GPS’}, {’available’: 1, ’
id’: 270526858, ’name’: u’Integrated GPS’}, {’available’: 1, ’id’: 270559509, ’n
ame’: u’Network based’}]
>>> positioning.default_module()
270526858
>>> positioning.module_info(270526858)
{’available’: 1, ’status’: {’data_quality’: 3, ’device_status’: 7}, ’version’: u
’1.00(0)’, ’name’: u’Integrated GPS’, ’position_quality’: {’vertical_accuracy’:
10.0, ’time_to_first_fix’: 1000000L, ’cost’: 1, ’time_to_next_fix’: 1000000L, ’h
orizontal_accuracy’: 10.0, ’power_consumption’: 3}, ’technology’: 1, ’id’: 27052
6858, ’capabilities’: 127, ’location’: 1}
>>>

The following example demonstrates how to use the Python positioning module.

information about available positioning modules
print "***available modules***"
print positioning.modules()
print ""

id of the default positioning module
print "***default module***"
print positioning.default_module()
print ""

detailed information about the default positioning module
print "***detailed module info***"
print positioning.module_info(positioning.default_module())
print ""

select a module (in practise, selecting default module has no
relevance.).
positioning.select_module(positioning.default_module())

set requestors.
at least one requestor must be set before requesting the
current position or last position.
the last requestor must always be service requestor
(whether or not there are other requestors).
positioning.set_requestors([{"type":"service",

"format":"application",
"data":"test_app"}])

get the last position.
print positioning.last_position()

An example dictionary returned/printed from the above call to last position function could be as follows

66 Chapter 4. Audio and Communication Services

{’vertical_accuracy’:59.0,’time’:1206530248.329,’latitude’:12.956741,’altitude’:
811.0,’horizontal_accuracy’:41.77254404,’longitude’:77.715568724}

get the last position if the device’s position has not previously been
discovered.
print positioning.last_position()

An example dictionary returned/printed from the above call to last position function could be as follows

{’vertical_accuracy’:NaN,’time’:1206530248.329,’latitude’:NaN,’altitude’:NaN,
’horizontal_accuracy’:NaN,’longitude’:NaN}

Example 1. Blocking call

get the position.
note that the first position()-call may take a long time
(because of gps technology).
print "***position info***"
print positioning.position()
print ""

re-get the position.
this call should be much quicker.
ask also course and satellite information.
print "***course and satellites***"
print positioning.position(course=1,satellites=1)
print ""

Example 2. Non-blocking call

def cb(event):
print "---"
print event
print "---"

print "***starts the position feed***"
print positioning.position(course=1,satellites=1,

callback=cb, interval=500000,
partial=0)

An example dictionary returned/printed from the above example script could be as follows:

{’satellites’: {’horizontal_dop’: 2.34999990463257, ’used_satellites’: 5, ’verti
cal_dop’: 2.29999995231628, ’time’: 1187167353.0, ’satellites’: 11, ’time_dop’:
1.26999998092651}, ’position’: {’latitude’: 60.217033666473, ’altitude’: 42.0, ’
vertical_accuracy’: 58.0, ’longitude’: 24.878942093007, ’horizontal_accuracy’: 4
7.531005859375}, ’course’: {’speed’: 0.0500000007450581, ’heading’: 68.959999084
4727, ’heading_accuracy’: 359.989990234375, ’speed_accuracy’: NaN}}

To run the script in the emulator you must configure PSY emulation from your emulator (SimPSYConfigurator
→ Select Config File→ <some config files>or Tools→ Position).

4.7 btsocket — Provides Bluetooth (BT) support

4.7. btsocket — Provides Bluetooth (BT) support 67

The socket module of the previous PyS60 releases has been renamed as btsocket. For information on the
usage of this module refer to Ensymble README. The following related constants and functions are defined:

Note: In release 1.0 the functions bt_advertise_service, bt_obex_receive, and
bt_rfcomm_get_available_server_channel incorrectly expected to be given the internal
e32socket.socket object as the socket parameter instead of the proper socket object. Now the functions
work correctly. The old calling convention is still supported but it is deprecated and may be removed in a future
release.

AF_BT
Represents the Bluetooth address family.

BTPROTO_RFCOMM
This constant represents the Bluetooth protocol RFCOMM.

RFCOMM

OBEX
Bluetooth service classes supported by bt_advertise_service.

AUTH

ENCRYPT

AUTHOR
Bluetooth security mode flags.

bt_advertise_service(name, socket, flag, class)
Sets a service advertising the service name (Unicode) on local channel that is bound to socket. If flag is
True, the advertising is turned on, otherwise it is turned off. The service class to be advertised is either
RFCOMM or OBEX.

bt_discover([address])
Performs the Bluetooth device discovery (if the optional BT device address is not given) and the discovery
of RFCOMM class services on the chosen device. Returns a pair: BT device address, dictionary of
services, where Unicode service name is the key and the corresponding port is the value.

bt_obex_discover([address])
Same as discover, but for discovery of OBEX class services on the chosen device.

bt_obex_send_file(address, channel, filename)
Sends file filename (Unicode) wrapped into an OBEX object to remote address, channel.

bt_obex_receive(socket, filename)
Receives a file as an OBEX object, unwraps and stores it into filename (Unicode). socket is a bound OBEX
socket.

bt_rfcomm_get_available_server_channel(socket)
Returns an available RFCOMM server channel for socket.

set_security(socket, mode)
Sets the security level of the given bound socket. The mode is an integer flag that is formed using a binary
or operation of one or more of: AUTH (authentication), ENCRYPT, AUTHOR (authorization). Example:
set_security(s, AUTH | AUTHOR).

Note: When listening to a Bluetooth socket on the phone, it is necessary to set the security level.

For examples on the usage of these functions, see Programming with Python for S60 Platform [?].

Setting default Access Point (AP) has been added to the standard socket module. The following related
constants and functions are defined:

select_access_point()
This opens popup selection where access points are listed and can be selected. Returns selected access
point id.

access_point(apid)
This creates access point object by given apid. Returns access point object.

68 Chapter 4. Audio and Communication Services

set_default_access_point(apo)
This sets the default access point that is used when socket is opened. Setting apo to "None" will clear
default access point.

access_points()
This lists access points id’s and names that are available.

Example 1:

import btsocket
#access point is selected from the list
apid = btsocket.select_access_point()
apo = btsocket.access_point(apid)
btsocket.set_default_access_point(apo)

s = btsocket.socket(btsocket.AF_INET, btsocket.SOCK_STREAM)
print apo.ip()
s.connect((’www.sourceforge.net’,80))
s.send(’GET /\r\n\r\n’)
s.recv(100)
s.close()
apo.stop()

Example 2:

import btsocket
#Access point id is already known
apo = btsocket.access_point(1)
btsocket.set_default_access_point(apo)

s = btsocket.socket(btsocket.AF_INET, btsocket.SOCK_STREAM)
s.connect((’www.sourceforge.net’,80))
s.send(’GET /\r\n\r\n’)
s.recv(100)
s.close()
apo.stop()

Example 3:

import btsocket
#display interface ip.
#access point is selected from the list
apid = btsocket.select_access_point()
apo = btsocket.access_point(apid)
apo.start()
#Note that ip-address is given by operator, if static ip-address is not defined,
#when connection is started
print apo.ip()
#When connection is closed dynamic ip-address is released
apo.stop()

4.7. btsocket — Provides Bluetooth (BT) support 69

70

CHAPTER

FIVE

Data Management

5.1 contacts — A contacts related services package

The contacts module offers an API to address book services allowing the creation of contact information
databases. The contacts module represents a Symbian contact database as a dictionary-like ContactDb
object, which contains Contact objects and which is indexed using the unique IDs of those objects. A
Contact object is itself a list-like object, which contains ContactField objects and which is indexed using
the field indices. Unique IDs and field indices are integers. The ContactDb object supports a limited subset of
dictionary functionality. Therefore, only __iter__, __getitem__, __delitem__,__len__, keys,
values, and items are included.

ContactDb objects represent a live view into the database. If a contact is changed outside your Python
application, the changes are visible immediately, and conversely any changes you commit into the database are
visible immediately to other applications. It is possible to lock a contact for editing, which will prevent other
applications from modifying the contact for as long as the lock is held. This can be done in, for example, a
contacts editor application when a contact is opened for editing, very much like with the Contacts application in
your Nokia device. If you try to modify a contact without locking it for editing, the contact is automatically
locked before the modification and released immediately afterwards.

5.1.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the Contact module:

open([filename[, mode]])
Opens a contacts database and returns a ContactDb object. filename should be a full Unicode path name.
If filename is not given, opens the default contacts database. If mode is not given, the database must exist.
If mode is ’c’, the database is created if it does not already exist. If mode is ’n’, a new, empty database is
created, overwriting the possible previous database.

Warning: Using open together with the additional parameters filename or mode is intended for testing
purposes only. Due to S60 SDK functionality, the open method can sometimes be unreliable with these
parameters.

5.1.2 ContactDb Object

There is one default contact database, but it is possible to create several databases with the open function.

class ContactDb
ContactDb objects have the following methods:

add_contact()
Adds a new contact into the database. Returns a Contact object that represents the new contact.
The returned object is already locked for modification. Note that a newly created contact will contain

71

some empty default fields. If you do not want to use the default fields for anything, you can ignore
them.

find(searchterm)
Finds the contacts that contain the given Unicode string as a substring and returns them as a list.

import_vcards(vcards)
Imports the vCard(s) in the given string into the database.

export_vcards(ids)
Converts the contacts corresponding to the ID’s in the given tuple ids to vCards and returns them as a
string.

keys()
Returns a list of unique IDs of all Contact objects in the database.

compact_required()
Verifies whether compacting is recommended. Returns an integer value indicating either a true or
false state. Returns True if more than 32K of space is unused and if this comprises more than 50
percent of the database file, or if more than 256K is wasted in the database file.

compact()
Compacts the database to its minimum size.

__delitem__(id)
Deletes the given contact from the database.

field_types()
Returns a list of dictionary objects that contains information on all supported field types. The list
contains dictionary objects, which each describe one field type. The most important keys in the
dictionary are ’type’ and ’location’ which together indentify the field type. ’type’ can
have string values such as ’email_address’. ’location’ can have the string values
’none’, ’home’, or ’work’. Another important key is ’storagetype’, which defines the
storage type of the field. ’storagetype’ can have the string values ’text’, ’datetime’,
’item_id’, or ’binary’. Note that the Contacts extension does not support adding, reading,
or modifying fields of any other type than ’text’ or ’datetime’. The other content returned by
field_types is considered to be advanced knowledge and is not documented here.

groups
Returns contact groups of the database. Read-only.

5.1.3 Contact Object

A Contact object represents a live view into the state of a single contact in the database. You can access the
fields either with a contact’s numeric field ID as contact[fieldid], or using the find method. Attempting
to modify a contact while it has been locked for editing in another application will raise the exception
ContactBusy.

class Contact
Contact objects have the following attributes:

id
The unique ID of this Contact. Read-only.

title
The title of this Contact. Read-only.

last_modified
The date/time when this Contact object was last modified. Read-only.

is_group
Returns 1 if this contact is a contact group. Returns 0 if normal contact entry. Read-only.

Contact objects have the following methods:

begin()
Locks the contact for editing. This prevents other applications from modifying the contact for as long
as the lock is held. This method will raise the exception ContactBusy if the contact has already
been locked.

72 Chapter 5. Data Management

commit()
Releases the lock and commits the changes made into the database.

rollback()
Releases the lock and discards all changes that were made. The contact remains in the state it was
before begin.

as_vcard()
Returns the contact as a string in vCard format.

add_field(type [, value [, label=field label][, location=location spec]])
Adds a new field into this Contact. This method raises ContactBusy if the contact has been
locked by some other application. type can be one of the supported field types as a string.
The following field types can be added:

•city
•company_name
•country
•date
•dtmf_string
•email_address
•extended_address
•fax_number
•first_name
•job_title
•last_name
•mobile_number
•note
•pager_number
•phone_number
•po_box
•postal_address
•postal_code
•state
•street_address
•url
•video_number
•picture
•second_name
•voip
•sip_id
•personal_ringtone
•share_view
•prefix
•suffix
•push_to_talk
•locationid_indication

The following field types are recognized but cannot be created at present:

•first_name_reading
•last_name_reading
•speed_dial
•thumbnail_image
•voice_tag
•wvid

5.1. contacts — A contacts related services package 73

All supported field types are passed as strings or Unicode strings, except for ’date’ which is a float
that represents Unix time. For more information on Unix time, see Section ??, Date and Time.
field label is the name of the field shown to the user. If you do not pass a label, the default label for
the field type is used.
location spec, if given, must be ’home’ or ’work’. Note that not all combinations of type and
location are valid. The settings of the current contacts database in use determine which ones are valid.

find([type=field type][, location=field location])
Finds the fields of this contact that match the given search specifications. If no parameters are given,
all fields are returned.

__delitem__(fieldindex)
Deletes the given field from this contact. Note that since this will change the indices of all fields that
appear after this field in the contact, and since the ContactField objects refer to the fields by
index, old ContactField objects that refer to fields after the deleted field will refer to different
fields after this operation.

5.1.4 ContactField Object

A ContactField represents a field of a Contact at a certain index. A ContactField has attributes, some
of which can be modified. If the parent Contact has not been locked for editing, modifications are committed
immediately to the database. If the parent Contact has been locked, the changes are committed only when
commit is called on the Contact.

class ContactField
ContactField objects have the following attributes:

label
The user-visible label of this field. Read-write.

value
The value of this field. Read-write.

type
The type of this field. Read-only.

location
The location of this field. This can be ’none’, ’work’, or ’home’.

schema
A dictionary that contains some properties of this field. The contents of this dictionary correspond to
those returned by the ContactDb method field_types.

5.1.5 Groups Object

A Groups object represents Symbian contact groups as a dictionary like object with limited subset of dictionary
functionality. Each group can be accessed using the group’s unique id as a key. The Groups object returns a list
like Group object as the value matching the given key.

The following common methods are supported: __iter__, __getitem__, __delitem__ and __len__.

class Groups
Groups objects have the following attributes:

add_group([name])
Creates new contact group and returns corresponding Group object. Group name can be given as an
optional parameter.

5.1.6 Group Object

A Group object represents single Symbian contact group as a list object with limited subset of list functionality.
The Group object lists Contact entry ids that belong to the group.

74 Chapter 5. Data Management

The native Symbian group objects are represented as Symbian contact entries in the database. Therefore they can
also be accessed as Python Contact objects, but this way their group handling properties cannot be used from
Python. Use Groups and Group objects to access group functionalities.

The following common methods are supported: __iter__, __getitem__, __delitem__ and __len__.

class Group
Group objects have the following attributes:

id
The unique id of the Group object. Read-only.

name
The name of the Group object. Read-write.

5.1. contacts — A contacts related services package 75

5.2 e32calendar — Access to calendar related services

The calendar module of the previous PyS60 releases has been renamed as e32calendar. For information
on the usage of this module refer to Ensymble README.

The e32calendar module offers an API to calendar services. The e32calendar module represents a
Symbian agenda database as a dictionary-like CalendarDb object, which contains Entry objects and which is
indexed using the unique IDs of those objects. There are five types of entry objects: AppointmentEntry,
EventEntry, AnniversaryEntry, ReminderEntry, and TodoEntry.

CalendarDb objects represent a live view into the database. If an entry is changed outside your Python
application, the changes are visible immediately, and conversely any changes you commit into the database are
visible immediately to other applications.

All time parameters use Unix time unless stated otherwise. For more information on Unix time, see Section ??,
Date and Time.

5.2.1 Module Level Functions

The following free functions - functions that do not belong to any class - are defined in the calendar module:

open([filename=None, mode=None])
Opens a calendar database and returns a new CalendarDb object.

If filename is None, the default database is opened.

If filename is given, it should contain drive letter, colon and file’s name, but no absolute path.

mode can be:

•None: Opens an existing calendar database.

•’c’: Opens an existing calendar database, or creates it if it doesn’t exist.

•’n’: Creates a new, empty calendar database. If filename exists, the previous contents are erased.

5.2.2 CalendarDb Objects

Calendar entries are stored in a calendar database. There is one default calendar database but more calendar
databases can be created by invoking open with parameters ’n’ or ’c’.

class CalendarDb
CalendarDb objects have the following methods:

add_appointment()
Creates and returns a new appointment entry AppointmentEntry. The entry is not added and
saved into the database until Entry.commit is called.

add_event()
Creates and returns a new event entry EventEntry. The entry is not added and saved into the
database until Entry.commit is called.

add_anniversary()
Creates and returns a new anniversary entry AnniversaryEntry. The entry is not added and
saved into the database until Entry.commit is called.

add_todo()
Creates and returns new todo entry TodoEntry. The entry is not added and saved into the database
until Entry.commit is called.

add_reminder()
Creates and returns new reminder entry ReminderEntry. The entry is not added and saved into
the database until Entry.commit is called.

76 Chapter 5. Data Management

find_instances(start date, end date, search str=u”[,appointments=0,events=0,anniversaries=0,todos=0,reminders=0
])

The parameters for this function include the start date, end date, search string, and optional
parameters. The optional parameters define the entry types to be included into the search. By default
all entry types are included. Returns a list that contains Entry instances found in the search. An
instance is a dictionary that contains the entry ID and the datetime value. An entry may have several
instances if it is repeated, for example once every week, etc.
In some Nokia models the search_str needs to be less or equal to 32 characters, otherwise an
error KErrArgument or a premature application exit (i.e. a panic) might occur.

monthly_instances(month, appointments=0, events=0, anniversaries=0, todos=0, reminders=0)
The parameters for this function include month (float) and optional parameters. The optional
parameters define the entry types to be returned. Returns a list that contains entry instances occurring
during the specified calendar month.

daily_instances(day, appointments=0, events=0, anniversaries=0, todos=0)
The parameters for this function include day (float) and optional parameters. The optional parameters
define the entry types to be returned. Returns a list that contains entry instances occurring on the
specified day.

export_vcalendars((int,...))
Returns a vcalendar string that contains the specified entries in vCalendar format. The parameter
for this function is a tuple that contains the entry IDs of the exported entries.

import_vcalendars(string)
Imports vcalendar entries, given in the string parameter, to the database. Returns a list that
contains the unique IDs of the imported entries.

__delitem__(id)
Deletes the given calendar Entry from the database. id is the unique ID of the calendar Entry.

__getitem__(id)
Returns a calendar Entry object indicated by the unique ID. The returned object can be one of the
following: AppointmentEntry, EventEntry, AnniversaryEntry, ReminderEntry, or
TodoEntry. id is the unique ID of the calendar Entry.

5.2.3 Entry Objects

An Entry object represents a live view into the state of a single entry in the database. You can access the entries
with an entry’s unique ID. If you create a new entry using db.add_appointment etc., it is saved into the
database only if you call the entry’s commit method. In case an entry is already saved into the database, the
autocommit mode is on by default and all the changes are automatically saved into the database, unless you call
the entry’s begin method. If you call the entry’s begin method, the changes are not saved into the database
until you call the entry’s commit method.

Database entries cannot be locked. In other words, other applications are able to make changes to the database
entries you are using (not directly to the EntryObjects you are using, but to their representation in the
database) at the same time you are modifying them, even if you use begin and commit methods.

class Entry
Entry objects have the following methods and properties:

content
Sets or returns the entry’s content text (Unicode).

commit()
Saves the entry or in case of a new entry adds the entry into the database. Note that this can be called
only in case of a new entry, created with db.add_appointment etc., or after begin is called.

rollback()
Undoes the changes made after last commit.

set_repeat(dictionary)
Sets the repeat data of the entry. dictionary is a repeat data dictionary that contains all the repeat
rules. For more information on repeat rules, see Section 5.2.4, Repeat Rules.

5.2. e32calendar — Access to calendar related services 77

get_repeat()
Returns the repeat data dictionary of the entry.

location
Sets or returns the entry’s location data (Unicode), for example meeting room information.

set_time(start[, end])
Sets the start and end datetime values of the entry (floats). If only one parameter is given, the other
will have the same value.
In case of events, anniversaries, and todo entries the datetime values are truncated to corresponding
date values.
TodoEntries can be made undated with TodoEntry.set_time(None). Making the todo
entry undated means removing the start and end date and all the repeat rules.

start_time
The start datetime value (float) of the entry or None if the start datetime of the entry is not set.

end_time
The end datetime value (float) of the entry or None if the end datetime of the entry is not set.

id
The unique ID of the entry.

last_modified
The datetime value (float) of the entry’s last modification in universal time.

originating
An integer value indicating if the entry is an originating entry or a modifying entry.

alarm
The alarm datetime value (float) for the entry. None if alarm is not set. Alternatively removes the
alarm if the value is set to None.
Alarms can be set to all Entry types. However, only alarms set to Appointments and Anniversaries
will actually cause an alarm; this is similar to the Calendar application in your Nokia device, which
allows you to set an alarm only for Meetings and Anniversaries. In addition, alarms set to any entries
residing in a database other than the default database do not cause actual alarms either.

priority
The priority of the entry, which can be an integer ranging from 0 to 255. Native Phonebook and
Calendar applications in Nokia devices use value 1 for high priority, 2 for normal priority, and 3 for
low priority.

crossed_out
The crossed out value of an entry. Only valid for todo entries. A value that is interpreted as false
means that the entry is not crossed out, whereas a value that is interpreted as true means that the entry
is crossed out. Note that TodoEntries must also have a cross-out time. If TodoEntry is crossed
out using this method, the moment of crossing out is set to the cross-out time of the TodoEntry.
See also Section 5.2.3, TodoEntry, cross_out_time.

replication
Sets or returns the entry’s replication status, which can be one of the following: ’open’,
’private’, or ’restricted’.

as_vcalendar()
Returns this entry as a vCalendar string.

AppointmentEntry Objects

class AppointmentEntry

AppointmentEntry class contains no additional methods compared to the Entry class from which it is
derived.

EventEntry

class EventEntry

78 Chapter 5. Data Management

EventEntry class contains no additional methods compared to the Entry class from which it is derived.

AnniversaryEntry

class AnniversaryEntry

AnniversaryEntry class contains no additional methods compared to the Entry class from which it is
derived.

ReminderEntry

class ReminderEntry

ReminderEntry class contains no additional methods compared to the Entry class from which it is derived.

TodoEntry

TodoEntryobjects represent todo entry types. They have additional properties compared to the Entry class
from which they are derived.

class TodoEntry
TodoEntryobjects have the following additional properties:

cross_out_time
The cross-out date value of the entry. The value can be None meaning that the entry is not crossed
out, or the cross-out date (float). The set value must be date (float). Setting a cross-out time also
crosses out the entry. See also Section 5.2.3, Entry Object, crossed_out.

5.2.4 Repeat Rules

Repeat rules specify an entry’s repeat status, that is, the recurrence of the entry. There are six repeat types:

• daily: repeated daily

• weekly: repeat on the specified days of the week, such as Monday and Wednesday, etc.

• monthly_by_dates: repeat monthly on the specified dates, such as the 15th and 17th day of the month

• monthly_by_days: repeat monthly on the specified days, such as the fourth Wednesday of the month,
or the last Monday of the month

• yearly_by_date: repeat yearly on the specified date, such as December 24

• yearly_by_day: repeat yearly on the specified day, such as every third Tuesday of May

There are exceptions to repeat rules. For example, you can specify the datetime value (float) in such a way that
the entry is not repeated on a specific day even if the repeat rule would specify otherwise.

You must set the start and end dates (floats) of the repeat. The end date can also be set to None to indicate that
the repeating continues forever. You can set interval defining how often the repeat occurs, for example in a
daily repeat: 1 means every day, 2 means every second day, etc. You can also set the days specifier which lets
you explicitly specify the repeat days; for example in a weekly repeat you can set "days":[0,2] which sets
the repeat to occur on Mondays and Wednesdays. If you do not set the days specifier, the repeat days are
calculated automatically based on the start date.

You can modify repeat data by calling rep_data = entry.get_repeat(), then making changes to
rep_data dictionary, and then calling entry.set_repeat(rep_data).

Repeating can be cancelled by calling entry.set_repeat with a parameter that is interpreted to be false,
such as entry.set_repeat(None).

5.2. e32calendar — Access to calendar related services 79

Repeat definition examples:

repeat = {"type":"daily", #repeat type
"exceptions":[exception_day, exception_day+2*24*60*60],
#no appointment on those days
"start":appt_start_date, #start of the repeat
"end":appt_start_date+30*24*60*60, #end of the repeat
"interval":1} #interval (1=every day, 2=every second day etc.)

repeat = {"type":"weekly", #repeat type
"days":[0,1], #which days in a week (Monday, Tuesday)
"exceptions":[exception_day], #no appointment on that day
"start":appt_start_date, #start of the repeat
"end":appt_start_date+30*24*60*60, #end of the repeat
"interval":1}
#interval (1=every week, 2=every second week etc.)

repeat = {"type":"monthly_by_days", #repeat type
appointments on second Tuesday and last Monday of the month
"days":[{"week":1, "day":1},{"week":4, "day":0}],
"exceptions":[exception_day], #no appointment on that day
"start":appt_start_date, #start of the repeat
"end":appt_start_date+30*24*60*60, #end of the repeat
"interval":1}
#interval (1=every month, 2=every second month etc.)

repeat = {"type":"monthly_by_dates", #repeat type
"days":[0,15],
appointments on the 1st and 16th day of the month.
"exceptions":[exception_day], #no appointment on that day
"start":appt_start_date, #start of the repeat
"end":appt_start_date+30*24*60*60, #end of the repeat
"interval":1}
#interval (1=every month, 2=every second month etc.)

repeat = {"type":"yearly_by_date", #repeat type
"exceptions":[exception_day], #no appointment on that day
"start":appt_start_date, #start of the repeat
"end":appt_start_date+3*365*24*60*60, #end of the repeat
"interval":1}
#interval (1=every year, 2=every second year etc.)

repeat = {"type":"yearly_by_day", #repeat type
appointments on the second Tuesday of February
"days":{"day":1, "week":1, "month":1},
"exceptions":[exception_day], #no appointment on that day
"start":appt_start_date, #start of the repeat
"end":appt_start_date+3*365*24*60*60, #end of the repeat
"interval":1}
#interval (1=every year, 2=every second year etc.)

5.3 e32db — Interface to the Symbian native DB

The e32db module provides an API for relational database manipulation with a restricted SQL syntax. For
details of DBMS support, see the S60 SDK documentation. For examples on using this module, see [?].

The e32db module defines the following functions:

80 Chapter 5. Data Management

format_rawtime(timevalue)
Formats timevalue (Symbian time) according to the current system’s date/time formatting rules and returns
it as a Unicode string.

format_time(timevalue)
Returns timevalue as a Unicode string formatted so that it is acceptable as a SQL time. To make a time
literal, surround the return value with hash (#) characters.

5.3.1 Dbms Objects

class Dbms()
Creates a Dbms object. Dbms objects support basic operations on a database.

Dbms objects have the following methods:

begin()
Begins a transaction on the database.

close()
Closes the database object. It is safe to try to close a database object even if it is not open.

commit()
Commits the current transaction.

compact()
Compacts the database, reclaiming unused space in the database file.

create(dbname)
Creates a database with path dbname.

execute(query)
Executes an SQL query. On success, returns 0 if a DDL (SQL schema update) statement was executed.
Returns the number of rows inserted, updated, or deleted, if a DML (SQL data update) statement was
executed.

open(dbname)
Opens the database in file dbname. This should be a full Unicode path name, for example,
u’c:\\foo.db’.

rollback()
Rolls back the current transaction.

5.3.2 DB view Objects

class Db_view()
Creates a Db_view object. DB_view objects generate rowsets from a SQL query. They provide
functions to parse and evaluate the rowsets.

Db view objects have the following methods:

col(column)
Returns the value in column. The first column of the rowset has the index 1. If the type of the column is
not supported, a TypeError is raised. See Table 5.1 for a list of supported data types.

col_count()
Returns the number of columns defined in the rowset.

col_length(column)
Gets the length of the value in column. Empty columns have a length of zero; non-empty numerical and
date/time columns have a length of 1. For text columns, the length is the character count, and for binary
columns, the length is the byte count.

col_raw(column)
Extracts the value of column as raw binary data, and returns it as a Python string. The first column of the

5.3. e32db — Interface to the Symbian native DB 81

rowset has the index 1. See Table 5.1 for a list of supported data types.

col_rawtime(column)
Extracts the value of a date/time column at index column as a long integer, which represents the raw
Symbian time value. The first column of the rowset has the index 1. See Table 5.1 for a list of the
supported data types.

col_type(column)
Returns the numeric type of the given column as an integer from a Symbian-specific list of types. This
function is used in the implementation of method col.

count_line()
Returns the number of rows available in the rowset.

first_line()
Positions the cursor on the first row in the rowset.

get_line()
Gets the current row data for access.

is_col_null(column)
Tests whether column is empty. Empty columns can be accessed like normal columns. Empty numerical
columns return a 0 or an equivalent value, and text and binary columns have a zero length.

next_line()
Moves the cursor to the next row in the rowset.

prepare(db, query)
Prepares the view object for evaluating an SQL select statement. db is a Dbms object and query the SQL
query to be executed.

5.3.3 Mapping Between SQL and Python Data Types

See Table 5.1 for a summary of mapping between SQL and Python data types. The col function can extract any
value except LONG VARBINARY and return it as the proper Python value. In addition, the col_raw function
can extract any column type except LONG VARCHAR and LONG VARBINARY as raw binary data and return it
as a Python string.

Inserting, updating, or searching for BINARY, VARBINARY, or LONG VARBINARY values is not supported.
BINARY and VARBINARY values can be read with col or col_raw.

5.3.4 Date and Time Handling

The functions col and format time use Unix time, seconds since January 1, 1970, 00:00:00 UTC, as the time
format. Internally the database uses the native Symbian time representation that provides greater precision and
range than the Unix time. The native Symbian time format is a 64-bit value that represents microseconds since
January 1st 0 AD 00:00:00 local time, nominal Gregorian. BC dates are represented by negative values. Since
converting this format to Unix time and back may cause slight round-off errors, you have to use the functions
col_rawtime and format_rawtime if you need to be able to handle these values with full precision.

The representation of date and time literals in SQL statements depends on the current system date and time
format. The only accepted ordering of day, month, and year is the one that the system is currently configured to
use. The recommended way to form date/time literals for SQL statements is to use the functions format_time
or format_rawtime that format the given date/time values properly according to the current system’s
date/time format settings.

5.4 e32dbm — DBM implemented using the Symbian native DBMS

The e32dbm module provides a DBM API that uses the native Symbian RDBMS as its storage back-end. The
module API resembles that of the gdbm module. The main differences are:

82 Chapter 5. Data Management

SQL type Symbian column type (in the DBMS
C++ API)

Python type Supported

BIT EDbColBit int yes
TINYINT EDbColInt8 int yes
UNSIGNED TINYINT EDbColUint8 int yes
SMALLINT EDbColInt16 int yes
UNSIGNED SMALLINT EDbColUint16 int yes
INTEGER EDbColInt32 int yes
UNSIGNED INTEGER EDbColUint32 int yes
COUNTER EDbColUint32 (with the TDb-

Col::EAutoIncrement attribute)
int yes

BIGINT EDbColInt64 long yes
REAL EDbColReal32 float yes
FLOAT EDbColReal64 float yes
DOUBLE EDbColReal64 float yes
DOUBLE PRECISION EDbColReal64 float yes
DATE EDbColDateTime float

(or long, with col raw-
time()

yes

TIME EDbColDateTime float
(or long, with col raw-
time()

yes

TIMESTAMP EDbColDateTime float
(or long, with col raw-
time()

yes

CHAR(n) EDbColText Unicode yes
VARCHAR(n) EDbColText Unicode yes
LONG VARCHAR EDbColLongText Unicode yes
BINARY(n) EDbColBinary str read only
VARBINARY(n) EDbColBinary str read only
LONG VARBINARY EDbColLongBinary n/a no

Table 5.1: Mapping between SQL and Python types

5.4. e32dbm — DBM implemented using the Symbian native DBMS 83

• The firstkey() - nextkey() interface for iterating through keys is not supported. Use the "for
key in db" idiom or the keys or keysiter methods instead.

• This module supports a more complete set of dictionary features than gdbm

• The values are always stored as Unicode, and thus the values returned are Unicode strings even if they
were given to the DBM as normal strings.

5.4.1 Module Level Functions

The e32dbm defines the following functions:

open(dbname[,flags, mode])
Opens or creates the given database file and returns an e32dbm object. Note that dbname should be a full
path name, for example, u’c:\\foo.db’. Flags can be:

•’r’: opens an existing database in read-only mode. This is the default value.

•’w’: opens an existing database in read-write mode.

•’c’: opens a database in read-write mode. Creates a new database if the database does not exist.

•’n’: creates a new empty database and opens it in read-write mode.

If the character ’f’ is appended to flags, the database is opened in fast mode. In fast mode, updates are
written to the database only when one of these methods is called: sync, close, reorganize, or
clear.

Since the connection object destructor calls close, it is not strictly necessary to close the database before
exiting to ensure that data is saved, but it is still good practice to call the close method when you are done with
using the database. Closing the database releases the lock on the file and allows the file to be reopened or deleted
without exiting the interpreter.

If you plan to do several updates, it is highly recommended that you open the database in fast mode, since inserts
and updates are more efficient when they are bundled together in a larger transaction. This is especially important
when you plan to insert large amounts of data, since inserting records to e32db is very slow if done one record
at a time.

5.4.2 e32dbm Objects

The e32dbm objects returned by the open function support most of the standard dictionary methods. The
supported dictionary methods are:

• __getitem__

• __setitem__

• __delitem__

• has_key

• update

• __len__

• __iter__

• iterkeys

• iteritems

• itervalues

• get

84 Chapter 5. Data Management

• setdefault

• pop

• popitem

• clear

These work the same way as the corresponding methods in a normal dictionary.

In addition, e32dbm objects have the following methods:

close()
Closes the database. In fast mode, commits all pending updates to disk. close raises an exception if
called on a database that is not open.

reorganize()
Reorganizes the database. Reorganization calls compact on the underlying e32db database file, which
reclaims unused space in the file. Reorganizing the database is recommended after several updates.

sync()
In fast mode, commits all pending updates to disk.

5.5 logs — Module to access the phone logs.

The logs offers generic access to the phone’s log. Via logs’s API it is possible to access, for example, the list
of received calls or the list of sms received. At this stage, it is only possible to read logs.

All of the accessor functions return a list of dictionaries containing the log events. The first item on the list is the
latest event.

Each dictionary has the following entries:

• number: The (phone) number associated with the log event

• name

• description: A description of the event

• direction: The direction associated with the event (i.e. whether incoming or outgoing)

• status: Event status

• subject

• id: The event’s id

• contact

• duration

• duration type

• flags

• link

• time: The time associated with the event as a unix timestamp.

• data

The current log types are currently supported:

• ’call’

5.5. logs — Module to access the phone logs. 85

• ’sms’

• ’data’

• ’fax’

• ’email’

• ’scheduler’

For those functions providing an optional mode parameter, the default mode is currently set to ’in’. mode can
take one of the following values:

• ’in’

• ’out’

• ’fetched’

• ’missed’

• ’in_alt’

• ’out_alt’

5.5.1 Module Level Functions

The following functions are provided:

raw_log_data()
Returns the phone’s log events of all supported types. For the list of supported types, see 5.5.

log_data(type, [start log=0, num of logs= all logs, mode= default mode])
Returns a list of num of logs events of a certain type, the latest one being at position start log in the event
logs. Only logs with the specified mode are taken into account.

log_data_by_time(type, start time, end time, [mode= default mode])
Returns the list of log events of type type that have occurred in the time interval between start time and
end time. Only logs with the specified mode are taken into account.

The variables start timeand end time are passed as a unix timestamp.

calls([start log=0, num of logs= all logs, mode= default mode])
Returns a list of num of logs events of type ’call’, the latest one being at position start log in the event
logs. Only logs with the specified mode are taken into account.

faxes([start log=0, num of logs= all logs, mode= default mode])
Returns a list of num of logs events of type ’fax’, the latest one being at position start log in the event
logs. Only logs with the specified mode are taken into account.

emails([start log=0, num of logs= all logs, mode= default mode])
Returns a list of num of logs events of type ’email’, the latest one being at position start log in the
event logs. Only logs with the specified mode are taken into account.

sms([start log=0, num of logs= all logs, mode= default mode])
Returns a list of num of logs events of type ’sms’, the latest one being at position start log in the event
logs. Only logs with the specified mode are taken into account.

scheduler_logs([start log=0, num of logs= all logs, mode= default mode])
Returns a list of num of logs events of type ’scheduler’, the latest one being at position start log in
the event logs. Only logs with the specified mode are taken into account.

data_logs([start log=0, num of logs= all logs, mode= default mode])
Returns a list of num of logs events of type ’data’, the latest one being at position start log in the event
logs. Only logs with the specified mode are taken into account.

86 Chapter 5. Data Management

5.6 Acronyms and Abbreviations

Acronym and meaning Description
MMS- Multimedia Messaging Service Multimedia Messaging Service (MMS) is a new standard in mobile messaging. The difference is that MMS can include not just text, but also sound, images and video.
Runtimes Execution environments for applications.
S60 A software platform for mobile phones using Symbian Operating System.
SA- System Attribute System Attribute.
SAPI- Service API A set of language-independent APIs integrated into S60 runtimes (WRT and Flash). These APIs are used to obtain specific information related to platform applications and device data.
SDK- Software Development Kit It is a set of programs used by a computer programmer to write application programs.
SMS- Short Messaging Service SMS is a service for sending short messages of up to 160 characters (224 characters if using a 5-bit mode) to mobile devices, including cellular phones, smartphones and PDAs.
URI- Uniform Resource Indicator Uniform Resource Indicator is a short string of characters that represent the address or location of resources, typically on the internet, and how that resource should be accessed.
URL- Universal Resource Locator A specially formatted sequence of characters representing a location on the internet.
WGS-84- World Geodetic System The World Geodetic System defines a fixed global reference frame for the Earth, for use in geodesy and navigation. The latest revision is WGS 84 dating from 1984, which will be valid up to about 2010.

Table 5.2: Acronyms and Abbreviations

5.6. Acronyms and Abbreviations 87

88

CHAPTER

SIX

Scriptext - Platform Service API Usage
from Python runtime

scriptext --- Platform Service API usage from Python runtime

Platform Service API Overview

This section describes the basic principles for using Platform Service APIs from Python. The S60 Service APIs
were introduced in the S60 5th Edition and back ported to S60 3rd edition FP2 platform. Platform Service APIs
are a set of language-independent APIs integrated into S60 runtimes including Python, Flash and Web Runtime.
Future S60 versions may support additional runtimes. S60 added Python binding for integrating Platform Service
APIs into Python Runtime.

Note: The service is available from ’S60 third edition FP2 and later’.

The following steps describe how to use Service APIs from Python Runtime:

• Create a service handle for a particular service.

• Define the input parameters.

• If an asynchronous service needs to be requested, define a callback function to process the results.

• Make a request for the required operation.

• Process the output parameters.

Service Objects and Interfaces
For using Platform Service API, a service handle needs to be created. Each Service API has a service provider
name and it can support one or more interfaces. A service handle can be instantiated by specify the service
provider and interface name. Each service provider supports one or more interfaces.

Note: Interfaces define a set of common methods for service objects.

For example, the location Service API supports ILocation interface. The ILocation interface defines a
GetLocation method to retrieve the current location of the device.

6.1 Overview of scriptext usage

The following section describes the usage of scriptext module in detail.

6.1.1 Module level functions and Data Types

Load

89

This is the only module level function. It can be used to load a particular service provider. It returns a handler
object that can be used to invoke further services supported by the provider.

scriptextHandle

This is the type of the object which is returned by Load() API. Services can be invoked using the Call() API
of this object.

The provider returns data wrapped in the objects as mentioned in the following:

Note: Examples of using these objects are listed in the following sections.

scriptextmap

Python wrapper over Platform Service API map object. The following operations are supported over this object:

• Finding length of the map

• Getting value with a key

• Finding if a key exists in the map

• Iterating over it

scriptextlist

Python wrapper over Platform Service API List object. The following operations are supported over this object:

• Finding its length

• Getting value at a given index

• Iterating over it

scriptextiterable

Python wrapper over Platform Service API Iterable object. The following operation is supported over this object:

• Iterating over it

6.1.2 Instantiating a Service Object

A Service object can be instantiated using the load API, with the required service provider details. Import
scriptext module before using the method.

Syntax

import scriptext
scriptext_handle = scriptext.load(<provider>, <interface>)

Arguments

The first argument is a string that specifies the name of the service provider.

The second argument is a string, that specifies one of the supported interfaces of the ¡provider¿.

90 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Return Value

The load() method returns a service object for a successful call. This method raises ScriptextError when
the service provider name or the interface name is null.

Example

The following sample code illustrates how to instantiate messaging service object:

import scriptext

try:
messaging_handle = scriptext.load("Service.Messaging", "IMessaging")

except err:
Handle error while instantiating the service.

6.1.3 Making Synchronous Request

This method is used to request a specific synchronous service or operation from a service provider, using
call() API.

Syntax

result = service_instance_object.call(operation, parameters)

Arguments

The operation argument describes the service requested from the service provider.

The parameters argument is a dictionary, which specifies input parameters to the specified request.

Return Value

The Return value contains the service output, and its data type depends on the service requested.

Example

The following sample code illustrates how to retrieve all the Sender IDs from Inbox using GetList:

6.1. Overview of scriptext usage 91

import scriptext

messaging_handle = scriptext.load(’Service.Messaging’, ’IMessaging’)

This ’GetList’ request returns all the SMS in the inbox as an iterable map

sms_iter = messaging_handle.call(’GetList’, {’Type’: u’Inbox’})

sender_list = []

for sms_dict in sms_iter:
if sms_dict[’MessageType’] == ’SMS’:
sender_list.append(sms_dict[’Sender’])

print "ID list :", sender_list

6.1.4 Making Asynchronous Request

For making an asynchronous request, a call back function needs to be defined and passed as an additional
parameter to the call() API.

Syntax

result = service_instance_object.call(operation, parameters, callback=callback_function)

Arguments

The operation argument describes the service requested from the service provider. The parameters argument is a
dictionary, which specifies input parameters to the specified request.

callback_function is an user defined callback function.

The following sample code illustrates how to define a callback handler function to handle the response from an
asynchronous request:

def callback_function(transactionID, eventID, outParam)

The following table describes the arguments of the call back function:

92 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Argument Description Value
transactionID This is the unique transaction ID associ-

ated with the particular asynchronous re-
quest.

It is returned as part of the result of the ini-
tial asynchronous call.

eventID Specifies the asynchronous operation sta-
tus.

For a complete list of EventID, see
EventID 6.12.2 section in the Appendix.

outParam This argument is a dictionary that holds the
output of an asynchronous call.

Refer to the following table for the dictio-
nary items in outParam.

The outParam argument of callback method is a map containing the return value, an error code, and an error
message.

Properties Description Values
ReturnValue This key contains the informa-

tion requested by the asynchronous
call that initiated the callback.

This key is present only if the requested
service has a value to return. In this case,
outParam contains only ErrorCode
and ErrorMessage.

Depends on the Platform Service API and
the asynchronous method that was called.
Not all calls return this property.

ErrorCode Specifies a pre-defined error code For detail information about Platform Ser-
vice API error codes and their descriptions,
see Service API Error Codes and Descrip-
tion 6.12.1 section in the Appendix.

ErrorMessage Describes the error Depends on the Platform Service API and
the asynchronous method that is called.

6.1. Overview of scriptext usage 93

Example

The following sample code illustrates how to retrieve media files from a database, using the operation:

import scriptext
import e32

def media_callback(trans_id, event_id, output_params):
Check if we are interested in this transaction
if trans_id == media_trans_id:

print "Not the transaction in which we are interested!"
return

Check if the transaction is complete
if event_id != scriptext.EventCompleted:

print "Transaction not complete!"
return

Check if the transaction has resulted in any error
if output_params[’ReturnCode’] != 0:

print output_params[’ReturnMessage’]
else:

song_list = []
for item in output_params[’ReturnValue’]:

song_list.append(item[’FileName’])
print "List of files retrieved:", song_list

lock.signal()

lock = e32.Ao_lock()
media_handle = scriptext.load(’Service.MediaManagement’, ’IDataSource’)

Request for the list of mp3s in ascending order

media_trans_id = media_handle.call(’GetList’,
{’Type’: u’FileInfo’: u’FileExtension’,

’StartRange’: u’.mp3’},
’Sort’: {’Key’: u’FileName’, ’Order’: u’Ascending’}},

callback=media_callback)

lock.wait()

6.1.5 Cancelling of Asynchronous Service Request

To cancel an asynchronous request, Cancel is passed as the operation argument in the call() API. The
transactionID associated with the asynchronous operation also needs to be passed. After completing the
cancel operation, the callback function is called with Event_id as scriptext.EvenCanceled.

Syntax

serviceInstance.call(’Cancel’, {’TransactionID’: serviceTransactionID})

where, transactionID is associated with the asynchronous operation, which needs to be cancelled.

Example

94 Chapter 6. scriptext - Platform Service API Usage from Python runtime

The following sample code illustrates how to send and cancel an SMS in asynchronous mode:

import scriptext
messaging_handle = scriptext.load(’Service.Messaging’, ’IMessaging’)

def sms_send_callback(trans_id, event_id, output_params):
if sms_trans_id == trans_id:

if event_id == scriptext.EventCanceled:
print "SMS Send Canceled"

else:
print "Event_id was not scriptext.EventCanceled"

else:
print "Invalid transaction ID received"

sms_trans_id = messaging_handle.call(’Send’, {’MessageType’: u’SMS’,
’To’: u’12345678’, ’BodyText’: u’Hi’},

callback=sms_send_callback)
try:

messaging_handle.call(’Cancel’, {’TransactionID’: sms_trans_id})
except scriptext.ScriptextError, err:

print "Error cancelling request ", err

6.1. Overview of scriptext usage 95

6.2 Application Manager

The Application Manager service enables Python applications to perform the following tasks:

• Retrieve information about the applications and user installed packages from the phone.

• Request for a particular operation by passing the input parameters. If you make an asynchronous service,
define a callback function to process the results.

The following sample code is used to load the provider:

import scriptext
appmanager_handle = scriptext.load(’Service.AppManager’, ’IAppManager’)

The following table summarizes the Application Manager Interface:

Service provider Service.AppManager
Supported interfaces IAppManager

The following table lists the services available in Application Manager:

Services Description
GetList 6.2.1 Retrieves the required information of user installed packages, all appli-

cations, or handler application.
LaunchApp 6.2.2 Launches application based on the specified application UID.
LaunchDoc 6.2.3 Launches application based on the Document.

6.2.1 GetList

GetList is used to retrieve information about user installed packages, all applications, and handler
applications. It takes a set of input parameters that define Type and Filter to retrieve the required information. It
is available only in synchronous mode.

The following is an example for using GetList:

appmanager_info = appmanager_handle.call(’GetList’, {’Type’: u’Application’})

The following table summarizes the specification of GetList:

Interface IAppManager
Description Retrieves information about user installed packages or handler applica-

tions based on document path or MIME type.
Response Model Synchronous
Pre-condition Valid instance of IAppManager interface is instantiated.
Post-condition Nil

96 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Input Parameters

Input parameters specify the Type of package or application to retrieve, and the Filter for the retrieved
information. Input parameter has properties called Type and Filter.

Name Type Range Description
Type unicode string UserInstalledPackage,

Application
Performs service based on the following content types. This field is mandatory:

For Application content type, this API returns all the application
present in the device, whether it is user installed or pre-installed.

For UserInstalledPackage content type, this API returns all user installed pack-
ages. This package contains either the application and the supporting DLL, or only the
DLLs.

[Filter] map Key: DocumentPath
or MimeType
Value: unicode string

This Filter Criteria is applicable when the Type is Application. It specifies the
Document path or MIME type of the application. For example, document path:
C:¿\\data\\abcd.txt and MIME type: image/jpeg. You can use the filter criteria to
find out the Handler application. If both DocumentPath and MimeType are present in
the Filter map then, DocumentPath gets preference over MimeType.

Table 6.1: Input parameters for Getlist

Output Parameters

Output parameters contain the requested information. They also contain ErrorCode, and ErrorMessage if
the operation fails.

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.
ReturnValue Iterable items InstalledPackage:

PackageName
Version
UID
Vendor
Drive
Application:
UID
Path
Caption
ShortCaption

An Installed package contains the metadata field and value
(for example: name, version, and UID) of the package
in the form of a map. Installed package map contains
the UID of package (In S60, it is UID of the .sisx file).

In case of Application, the API returns the UID, path, and
caption of the application. The API returns the appropriate
error code if the application does not match the given criteria.
For example, if the Mime type given for one SDK or Device is
not valid for another, it returns an error code.

Table 6.2: Output parameters for GetList

Errors

The following table lists the error codes and their values:

Error code value Description
0 Success
1002 Bad argument type
1004 Service not supported
1012 Item not found

Table 6.3: Error codes

Error Messages

The following table lists the error messages and their description:

6.2. Application Manager 97

Error messages Description
AppManager:GetList:Type
Missing

Indicates missing of a content type or a mismatch in the
datatype of the given content type.

AppManager:GetList:Filter
type mismatch

Indicates a mismatch in the datatype of the given filter.

AppManger:GetList:Asynchronous
version of API is not
supported

Indicates that the asynchronous version of unsupported
GetList is called.

Table 6.4: Error messages

Example

The following sample code illustrates how to get the list of applications on S60 device:

import scriptext

Load the desired SAPI
appmanager_handle = scriptext.load(’Service.AppManager’, ’IAppManager’)
try:

f = open(’c:\\data.txt’, ’a+’)
app_info = []
appmanager_info = appmanager_handle.call(’GetList’, {’Type’: u’Application’})
for item in appmanager_info:

app_info.append(item[’UID’])
app_info.append(item[’Caption’])
print item[’UID’]
print item[’Path’]
print item[’Caption’]
print item[’ShortCaption’]

f.write(str(app_info))
except scriptext.ScriptextError, err:

print "Error getting the list of Installed Application: ", err

6.2.2 LaunchApp

LaunchApp is used to launch an application. It takes a set of input parameters that define application ID and the
options for launching the application.

The following are the examples for using LaunchApp:

Synchronous

appmanager_id = appmanager_handle.call(’LaunchApp’, {’ApplicationID’: u’s60uid://0x10005a22’})

98 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Asynchronous

appmanager_id = appmanager_handle.call(’LaunchApp’,
{’ApplicationID’: u’s60uid://0x10005a22’},
callback=launch_app_callback)

where, launch_app_callback is a user defined callback function.

The following table summarizes the specification of LaunchApp:

Interface IAppManager
Description Launches the application based on UID.
Response Model Synchronous and asynchronous
Pre-condition Valid instance of IAppManager interface is instantiated.
Post-condition Nil

Input Parameters

Input parameter specifies the ApplicationID and the mode for launching the application. Input parameter
has three properties: application ID, command line argument, and options. Options contain mode, position, and
document path.

Name Type Range
ApplicationID string s60uid://<UID>
[CmdLine] unicode string Command line argument
[Options] map For detail information on Options, refer to the following table 6.6

Table 6.5: Input parameters for LaunchApp

Key Value
[Mode] Chained or Standalone
[Position] Background or foreground
[DocumentPath] unicode string

Table 6.6: Options that can be used with LaunchApp, default values are emphasized

In Asynchronous mode the launching application receives the notification when the launched application dies.
The notification is not received if this request is cancelled. Cancelling the request does not close the launched
application.

Chained mode is applicable for UI based applications only. You will not be able to launch the application in
background position in chained mode.

Output Parameters

In asynchronous mode, the input_params that is passed to the callback function contains ErrorCode, and
an ErrorMessage if the operation fails.

Errors

The following table lists the error codes and their values:

6.2. Application Manager 99

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when the operation fails.
ErrorMessage string NA Error Description in Engineering English.

Table 6.7: Output parameters for LaunchApp

Error code value Description
0 Success
1002 Bad argument type
1004 Service not supported
1012 Item not found

Table 6.8: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
AppManager:LaunchApp:Application ID Missing Indicates missing of Application ID or a

mismatch in the datatype of the given Ap-
plication ID.

AppManager:LaunchApp:Command Line type mismatch Indicates a mismatch in the datatype of
Command Line.

AppManger:LaunchApp:OptionMap type mismatch Indicates a mismatch in the datatype of Op-
tions.

Table 6.9: Error messages

Example

The following sample code illustrates how to launch the Help.exe, in asynchronous mode:

100 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext
import e32
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete.
def launch_app_callback(trans_id, event_id, input_params):

if trans_id != appmanager_id and event_id != scriptext.EventCompleted:
print "Error in servicing the request"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message is: " + input_params["ReturnValue"]["ErrorMessage"]
else:

print "Application Launched Successfully: "

lock.signal()

Load appmanage service
appmanager_handle = scriptext.load(’Service.AppManager’, ’IAppManager’)

Make a request to query the required information in asynchronous mode
appmanager_id = appmanager_handle.call(’LaunchApp’, {’ApplicationID’: u’s60uid://0x10005a22’}, callback=launch_app_callback)

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.2.3 LaunchDoc

LaunchDoc is used to launch a document in standalone mode or embedded mode. It takes a set of input
parameters that specifies the DocumentPath, MimeType, and options.

The following are the examples for using LaunchDoc:

Synchronous

appmanager_id = appmanager_handle.call(’LaunchDoc’,
{’Document’: {’DocumentPath’: u’c:\\data\\beak.jpg’}})

Asynchronous

appmanager_id = appmanager_handle.call(’LaunchDoc’,
{’Document’: {’DocumentPath’: u’c:\\data\\beak.jpg’}},
callback=launch_doc_callback)

where, launch_doc_callback is a user defined callback function.

The following table summarizes the specification of LaunchDoc:

Interface IAppManager
Description Launches the application based on a given document.
Response Model Synchronous and asynchronous
Pre-condition Valid instance of IAppManager interface is instantiated.
Post-condition Nil

6.2. Application Manager 101

Input Parameters

Input parameter specifies the DocumentPath, MimeType, and mode options.

Name Type Range Description
Document map Key:

DocumentPath
or Handle
Value: string

Specifies path of the document to launch.

If MimeType is not given in input then, it is
mandatory to give document as input parameter.

If Handle and DocumentPath both are present in
map then Handle will get preference.

MimeType unicode string NA MimeType of the application to be Launch.
If document is not given in input then it is manda-
tory to give MimeType as input parameter.

[Options] map Key: Mode
Value: Chained
or Standalone

By default the mode is Standalone.

Table 6.10: Input parameters for Launchdoc

Launchdoc finds the Handler application internally, in the absence of MimeType. It launches the application
based on the MIME type and returns the path of the new document, if the Document is absent from the input.

In Asynchronous mode the launching application receives a notification when the launched application dies. The
notification is not received if this request is cancelled. Cancelling the request does not close the launched
application.

Chained mode is applicable for UI based applications only.

102 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Output Parameters

Output parameters contain ReturnValue. They also contain ErrorCode, and an ErrorMessage, if the
operation fails.

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code

when the operation fails.
ErrorMessage string NA Error Description in Engineering En-

glish.
[ReturnValue] string LaunchDoc returns the document name

if it creates a new one. (that is, Re-
turn value is optional as only some ap-
plication creates default document.)

If Document is not mentioned and only the
MimeType is mentioned, then application is
launched based on the MimeType and returns
the default document of the application. Cre-
ation of the default document depends upon the
launched application.

Table 6.11: Output parameters for LaunchDoc

Errors

The following table lists the error codes and their values:

Error code value Description
0 Success
1004 Service not supported
1012 Item not found

Table 6.12: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
AppManager:LaunchDoc:
Document/MimeType
Missing or datatype
mismatch

Indicates missing of Document or MimeType or a mismatch in the
datatype of the given Document or MimeType.

AppManager:LaunchDoc:
OptionMap type mismatch

Indicates a mismatch in the datatype of Command Line.

AppManager:LaunchDoc:
OptionMap type mismatch

Indicates a mismatch in the datatype of Options.

Table 6.13: Error messages

6.2. Application Manager 103

Example

The following sample code illustrates how to launch an application on S60 device, in asynchronous mode:

import scriptext
import e32
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def launch_doc_callback(trans_id, event_id, input_params):

if trans_id != appmanager_id and event_id != scriptext.EventCompleted:
print "Error in servicing the request"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message is: " + input_params["ReturnValue"]["ErrorMessage"]
else:

print "Application Launched Successfully: "

lock.signal()

Load appmanage service
appmanager_handle = scriptext.load(’Service.AppManager’, ’IAppManager’)

Make a request to query the required information in asynchronous mode
Path dependent on the environment on which the application is run
appmanager_id = appmanager_handle.call(’LaunchDoc’, {’Document’: {’DocumentPath’: u’c:\\data\\beak.jpg’}}, callback=launch_doc_callback)
print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

104 Chapter 6. scriptext - Platform Service API Usage from Python runtime

6.3 Calendar

The Calendar service enables Python applications to access, create, and manage calendars and their entries stored
on a device.

The following sample code is used to load the provider:

import scriptext
calendar_handle = scriptext.load(’Service.Calendar’, ’IDataSource’)

The following table summarizes the Calendar Interface:

Service provider Service.Calendar
Supported interfaces IDataSource

The following table lists the services available in Calendar:

Services Description
GetList 6.3.1 Retrieves a list of available calendars or a list of calendar entries.
Add 6.3.2 Adds a new calendar in the device or a new entry in the specified calen-

dar file.
Delete 6.3.3 Deletes a specific calendar from the device or, one or more entries /

instances from a specific calendar file.
Import 6.3.4 Imports calendar entries from an input file.
Export 6.3.5 Exports calendar entries to an output file.
RequestNotification 6.3.6 Notifies when add, delete, or modify operation is performed on the en-

tries in the calendar store.

6.3.1 GetList

GetList is used to retrieve the information about available calendar databases or calendar entries. It takes a set
of input parameters that define the type of information to return, and how to filter the returned list. It is available
only in synchronous.

The following is an example for using GetList:

meeting_list = calendar_handle.call(’GetList’, {’Type’: u’CalendarEntry’, ’Filter’: {’CalendarName’: u’C:Calendar’, ’Type’: u’Meeting’}})

The following table summarizes the specification of GetList:

Interface IDataSource
Description Returns a list of available calendars or calendar entries.
Response Model Synchronous
Pre-condition IDataSource interface is loaded.
Post-condition Nil
Note The calendar file must be present to get a list of entries from a specific calendar.

Input Parameters for Calendar

Input parameter specifies the Type and Filter to perform GetList service.

6.3. Calendar 105

Name Type Range Description
Type unicode string Calendar Indicates that the GetList service is to

be performed on a calendar.
[Filter] map DefaultCalendar: bool This is an optional parameter. If

DefaultCalendar is set to True,
GetList returns the list with one element
(default calendar) else, it returns a list of all
calendars.

Table 6.14: Input parameters for Calendar Getlist

Output Parameters for Calendar

Output parameters contain the requested information. It also contains ErrorCode, and an ErrorMessage if
the operation fails. ReturnValue contains an array of all Calendars.

Name Type Range Description
ErrorCode int NA Service specific error

code on failure of the
operation.

ErrorMessage string NA Error description in
Engineering English.

ReturnValue ScriptextIterableWrapper This is an Iterable
list of available cal-
endars in the format :
Drivexxx:FileNamexxx.

Table 6.15: Output parameters for Calendar Getlist

Input Parameters for Calendar Entry

Input parameter specifies the Type and Filter to perform GetList service.

Output Parameters for Calendar Entry

Output parameter contains ReturnValue. It also contain ErrorCode, and an ErrorMessage if the
operation fails.

ReturnValue of Calendar Entry is an iterable list of entries, which contains all relevant fields of the calendar
entry based on the Entry Type (Meeting, To-Do, Reminder, DayEvent, Anniversary).

Errors

The following table lists the errors and their values:

Error Message

The following table lists the error messages and their description:

Example

The following sample code illustrates how to display all calendar entries:

106 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range Description
Type unicode

string
CalendarEntry Indicates that the GetList service is performed on cal-

endar entries.
[Filter] map [CalendarName]: unicode string

[id]: unicode string
[LocalId]: unicode string
[StartRange]: datetime
[EndRange]: datetime
[SearchText]: unicode string
[Type]: unicode string
where, [Type] is one
of the following:
Meeting
ToDo
Anniversary
Reminder
DayEvent
IncludeAll

All instances are fetched if Filter is not present.
CalendarName specifies the calendar used in the
format Drivexxx:Filenamexxx. If this parameter
is not specified then, the default calendar is used.
GetList returns the entries matching with id or
LocalId, if only id or LocalId is specified.
In case of id, the first entry is the parent entry.
This case ignores the other fields in the input map.

If any of the Ids (id and LocalId) are not speci-
fied then, GetList interprets the input as follows:

Returns the instances falling within Star-
tRange and EndRange, if they are specified.
Returns all instances present in Calendar, if
StartRange and EndRange are not specified.
Returns all instances present on or after the
specified date if only StartRange is specified.
Returns all instances present on or before the
specified date if only EndRange is specified.
Matches the string with the summary field of the entry if
Search Text is specified. The match is not case sensitive.
Includes only entries of the Type specified in the output
if Type parameter is present else, includes all entry types.

Table 6.16: Input parameters for Calendar Entry Getlist

6.3. Calendar 107

Name Type Range Description
ErrorCode int NA Service specific error

code on failure of the
operation.

ErrorMessage string NA Error description in
Engineering English.

ReturnValue ScriptextIterableWrapper For specific informa-
tion on Types, refer to
the following tables:
Meeting: 6.18
To-Do: 6.19
Anniversary: 6.20
DayEvent: 6.21
Reminder: 6.22

ReturnValue of
Calendar Entry is an
iterable list of en-
tries, which contains
all relevant fields of
the calendar entry
based on the Entry
Type (Meeting,
To-Do, Reminder,
DayEvent,
Anniversary).

The output is an
Iterable list of in-
stances if id and
LocalId are not
specified in filter.

For more information
on keys, refer to the
section Key Values
6.3.7.

Table 6.17: Output parameters for Calendar Entry Getlist

Type string Meeting
id string NA
LocalId string NA
Summary string NA
SeqNum 32-bit int NA
StartTime datetime NA
EndTime datetime NA
InstanceStartTime datetime (Valid only for instance list) NA
InstanceEndTime datetime (Valid only for instance list) NA
Replication string Open Private Restricted
Description string NA
Priority 32-bit int NA
AlarmTime datetime NA
Location string NA
Status string Tentative Confirmed Cancelled NullStatus
RepeatDates List of dates NA
ExDates List of dates NA
Method string NA
PhoneOwner string NA
Organizer CommonName: string Address: string NA
Attendees List of maps NA
RepeatRule map NA

Table 6.18: Entry type: Meeting

108 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Type string ToDo
id string NA
LocalId string NA
Summary string NA
EndTime datetime NA
Replication string Open Private Restricted
Description string NA
Priority 32-bit int NA
AlarmTime datetime NA
Status string TodoNeedsAction TodoCompleted TodoInProcess Cancelled NullStatus

Table 6.19: Entry type: ToDo

Type string Anniversary
id string NA
LocalId string NA
Summary string NA
StartTime datetime NA
Replication string Open Private Restricted
Description string NA
Priority 32-bit int NA
AlarmTime datetime NA

Table 6.20: Entry type: Anniversary

Type string DayEvent
id string NA
LocalId string NA
Summary string NA
StartTime datetime NA
EndTime datetime NA
Replication string Open Private Restricted
Description string NA
Priority 32-bit int NA
AlarmTime datetime NA

Table 6.21: Entry type: DayEvent

Type string Reminder
id string NA
LocalId string NA
Summary string NA
StartTime datetime NA
Replication string Open Private Restricted
Description string NA
Priority 32-bit int NA
AlarmTime datetime NA

Table 6.22: Entry type: Reminder

Error code value Description
1000 Invalid service argument
1012 Item not found

Table 6.23: Error codes

6.3. Calendar 109

Error messages Description
Calendar:GetList:Type is invalid Type is missing or invalid Type is passed
Calendar:GetList:Filter is invalid Type of Filter parameter is invalid
Calendar:GetList:DefaultCalendar is invalid Type passed for DefaultCalendar is invalid
Calendar:GetList:Id is invalid Type passed for Id is invalid
Calendar:GetList:LocalId is invalid Type passed for LocalId is invalid
Calendar:GetList:StartRange is invalid Type passed for StartRange is invalid
Calendar:GetList:EndRange is invalid Type passed for EndRange is invalid
Calendar:GetList:SearchText is invalid Type passed for SearchText is invalid
Calendar:GetList:CalendarName is invalid Type passed for CalendarName is invalid

Table 6.24: Error messages

import scriptext

Load Calendar service
calendar_handle = scriptext.load(’Service.Calendar’, ’IDataSource’)
meeting_list = calendar_handle.call(’GetList’, {’Type’: u’CalendarEntry’, ’Filter’: {’CalendarName’: u’C:Calendar’, ’Type’: u’Meeting’}})
for meeting in meeting_list:
print ’Id = ’ + meeting[’id’]

print ’Description = ’ + meeting[’Description’]

value = meeting[’StartTime’]
print "Meeting starting time is ", value.day, value.month, value.year, value.hour, ":", value.minute, ":", value.second

value = meeting[’EndTime’]
print "Meeting End time is ", value.day, value.month, value.year, value.hour, ":", value.minute, ":", value.second

6.3.2 Add

Add is used to create a new calendar on the device, add an entry to a calendar, or modify the entry if an entry
with the same LocalId already exists in the calendar. The entry is added to the specified calendar or, if no
calendar is specified, to the default one. In case the default calendar does not exist, it is created. It is available
only in synchronous mode.

The following is an example for using Add:

calendar_handle.call(’Add’, {’Type’: u’CalendarEntry’, ’Item’: {’Description’: u’This is the meeting description’, ’StartTime’, start_time, ’EndTime’, end_time}})
where start_time and end_time are datetime objects.

The following table summarizes the specification of Add:

Interface IDataSource
Description Adds a new calendar in the device or a new entry in a specific calendar

file.
Response Model Synchronous
Pre-condition IDataSource interface is loaded. For updating a specific entry, the

Id must exist and can be retrieved by a call to Add or GetList.
Post-condition Nil

Input Parameters for Calendar

110 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Input parameter specifies the details of a new calendar. Input parameter has two properties: Type, and Item.

Name Type Range Description
Type unicode string Calendar Adds a new calendar
Item map CalendarName: unicode

string
Specifies the name of the calendar to
be added in the format Drivexxx: File-
Namexxx.

Table 6.25: Input parameters for Calendar Add

Output Parameters for Calendar

Output parameter contains an error code and an optional error message if the operation fails.

Name Type Range Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.26: Output parameters for Calendar Add

Input Parameters for Calendar Entry

Add performs add or update operations depending on the input parameters of Calendar Entry. Input parameters
differ based on the Entry Type (Meeting, To-Do, Reminder, DayEvent, Anniversary).

Name Type Range Description
Type unicode string CalendarEntry Adds a new entry or modifies an existing entry depending

on the input of Calendar Entry.
Item map [CalendarName]:

unicode string
For specific informa-
tion on Type, refer to
the following tables:
Meeting: 6.28
To-Do: 6.29
Anniversary: 6.30
DayEvent: 6.31
Reminder: 6.32

For different entry types, the corre-
sponding input maps are given.

For more information about keys, re-
fer the section Key Values 6.3.7.
The keys mentioned in the tables for each ’Type’
are only applicable for that Type, rest are ignored.

The attendee field has a value of type ’map’.
The phoneownermust match the ’Address’ field of one
of the attendees, which means that a phoneowner is an
attendee.

Table 6.27: Input parameters for Calendar Entry Add

Output Parameters for Calendar Entry

Output parameter contains the requested information, an ErrorCode, and an ErorrMessage if the operation
fails.

Input Parameters for Update

Input parameter specifies the type on which an operation is performed and the details of the particular Type.

Output Parameters for Update

6.3. Calendar 111

Type unicode string Meeting
[Summary] unicode string NA
[SeqNum] 32-bit int NA
StartTime datetime NA
EndTime datetime NA
[Replication] unicode string NA
[Description] unicode string NA
[Priority] 32-bit int NA
[AlarmTime] datetime NA
[Location] unicode string NA
[Status] unicode string Tentative Confirmed Cancelled NullStatus
[RepeatDates] List of dates NA
[ExDates] List of dates NA
[Method] None

Publish
Request
Reply
Add
Cancel
Refresh
Counter
DeclineCounter

NA

[PhoneOwner] unicode string NA
[Organizer] [CommonName]: string

Address: string
NA

[Attendees] List of maps NA
[RepeatRule] map NA

Table 6.28: Entry type: Meeting

Type unicode string ToDo
[Summary] unicode string NA
[EndTime] datetime NA
[Replication] unicode string Open

Private
Restricted

[Description] unicode string NA
[Priority] 32-bit int NA
[AlarmTime] datetime NA
[Status] unicode string TodoNeedsAction

TodoCompleted
TodoInProcess
Cancelled
NullStatus

Table 6.29: Entry type: ToDo

Type unicode string Anniversary
[Summary] unicode string NA
StartTime datetime NA
[Replication] unicode string Open Private Restricted
[Description] unicode string NA
[Priority] 32-bit int NA
[AlarmTime] datetime NA

Table 6.30: Entry type: Anniversary

112 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Type unicode string DayEvent
[Summary] unicode string NA
StartTime datetime NA
[EndTime] datetime (If not specified, the value will be same as StartTime) NA
[Replication] unicode string Open Private Restricted
[Description] unicode string NA
[Priority] 32-bit int NA
[AlarmTime] datetime NA

Table 6.31: Entry type: DayEvent

Type string Reminder
[Summary] unicode string NA
StartTime datetime NA
[Replication] unicode string Open Private Restricted
[Description] unicode string NA
[Priority] 32-bit int NA
[AlarmTime] datetime NA

Table 6.32: Entry type: Reminder

Name Type Range Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.
ReturnValue string NA Returns Id string of the new entry added. The LocalId

is obtained by a call to GetList, with Id as filter pa-
rameter.

Table 6.33: Output parameters for Calendar Entry Add

Name Type Range Description
Type unicode string CalendarEntry Adds a new entry or modifies an existing entry depending

on the input of Calendar Entry.
Item map [CalendarName]:

unicode string
[LocalId]: unicode string
[InstanceStartTime]: int

CalendarName must be specified in
Drivexxx:Filenamexxx. If Calendar-
Name is not specified then update oper-
ation is performed on default calendar.

Identifies the Entry by the LocalId. In case of
repeating entry, InstanceStartTime (applicable
only for Meeting type) is used to identify the in-
stance to be modified. If InstanceStartTime
is not specified then it modifies the whole en-
try. The modifiable fields(except type) is taken
from CalendarEntry. RepeatRule can
be modified or added for Parent entry only.

The keys mentioned in the tables for each ’Type’ are only
applicable for that Type, rest are ignored.

Table 6.34: Input parameters for Update

6.3. Calendar 113

Output parameter contains the Id of the new entry added, ErrorCode, and an ErrorMessage, if the
operation fails.

Name Type Range Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.
ReturnValue string NA Returns Id string of the new entry added. The LocalId

is obtained by a call to GetList, with Id as filter pa-
rameter.

Table 6.35: Output parameters for Update

Errors

The following table lists the errors and their values:

Error code value Description
1000 Invalid service argument
1002 Bad argument type
1004 Service not supported
1010 Entry exists
1012 Item not found

Table 6.36: Error codes

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to add a calendar entry:

import scriptext
import datetime

Load Calendar service
calendar_handle = scriptext.load(’Service.Calendar’, ’IDataSource’)

start_time = datetime.datetime(2009,03,12,17,0,0)
end_time = datetime.datetime(2009,03,12,18,0,0)

try:
calendar_handle.call(’Add’, {’Type’: u’CalendarEntry’, ’Item’: {’Type’: u’Meeting’, ’Description’: u’This is the meeting description’, ’StartTime’: start_time, ’EndTime’: end_time}})

except scriptext.ScriptextError:
print ’Error in servicing the request’

else:
print "Add request successfully complete!"

6.3.3 Delete

Delete is used to remove a calendar from the device or, one or more entries from a calendar. Entries are deleted
from the specified calendar or, from the default one if no calendar is specified. You can delete a calendar in
synchronous mode. You can delete calendar entries both in synchronous and asynchronous mode.

Note:

114 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Error messages Description
Calendar:Add:Entry Type is invalid Invalid type is passed for Type parameter
Calendar:Add:InstanceStartTime is
invalid

Invalid type is passed for InstanceStartTime pa-
rameter

Calendar:Add:LocalId is invalid Invalid type is passed for LocalId parameter
Calendar:Add:Summary is invalid Invalid type is passed for Summary parameter
Calendar:Add:Description is invalid Invalid type is passed for Description parameter
Calendar:Add:Location is invalid Invalid type is passed for Location parameter
Calendar:Add:Replication is invalid Invalid type is passed for Replication parameter
Calendar:Add:Status is invalid Invalid type is passed for Status parameter
Calendar:Add:Method is invalid Invalid type is passed for Method parameter
Calendar:Add:SeqNum is invalid Invalid type is passed for SeqNum parameter
Calendar:Add:Priority is invalid Invalid type is passed for Priority parameter
Calendar:Add:StartTime is invalid Invalid type is passed for StartTime parameter
Calendar:Add:EndTime is invalid Invalid type is passed for EndTime parameter
Calendar:Add:AlarmTime is invalid Invalid type is passed for AlarmTime parameter
Calendar:Add:PhoneOwner is invalid Invalid type is passed for PhoneOwner parameter
Calendar:Add:Organizer is invalid Invalid type is passed for Organizer parameter
Calendar:Add:Attendees is invalid Invalid type is passed for Attendees parameter
Calendar:Add:CommonName is invalid Invalid type is passed for CommonName parameter
Calendar:Add:Address is invalid Invalid type is passed for Address parameter
Calendar:Add:Role is invalid Invalid type is passed for Role parameter
Calendar:Add:Status is invalid Invalid type is passed for Status parameter
Calendar:Add:Rsvp is invalid Invalid type is passed for Rsvp parameter
Calendar:Add:RepeatDates is invalid Invalid type is passed for RepeatDates parameter
Calendar:Add:ExDates is invalid Invalid type is passed for ExDates parameter
Calendar:Add:RepeatRule is invalid Invalid type is passed for RepeatRule parameter
Calendar:Add:Type is invalid Invalid type is passed for RepeatRule:Type parame-

ter
Calendar:Add:Type is missing RepeatRule:Type parameter is missing
Calendar:Add:DaysInWeek is invalid Invalid type passed for RepeatRule:DaysInWeek or

list contains invalid data
Calendar:Add:UntilDate is invalid Invalid type passed for RepeatRule:UntilDate
Calendar:Add:RepeatRule:StartDate is
invalid

Invalid type passed for RepeatRule:StartDate

Calendar:Add:Interval is invalid Invalid type is passed for RepeatRule:Interval
parameter

Calendar:Add:MonthDays is invalid Invalid type passed for RepeatRule:MonthDays or
list contains invalid data

Calendar:Add:DaysInWeek is invalid Invalid type passed for RepeatRule:DaysInWeek or
list contains invalid data

Calendar:Add:DaysOfMonth is invalid Invalid type passed for RepeatRule:DaysOfMonth
or list contains invalid data

Calendar:Add:RepeatRule:DaysOfMonth:Day Invalid type passed for
RepeatRule:DaysOfMonth:Day

Calendar:Add:RepeatRule:DaysOfMonth:WeekNumberInvalid type passed for
RepeatRule:DaysOfMonth:WeekNumber

Calendar:Add:Month Invalid type passed for RepeatRule:Month
Calendar:Add:Item is invalid Invalid type is passed for Item
Calendar:Add:CalendarName is invalid Invalid type is passed for CalendarName
Calendar:Add: is invalid Invalid type is passed for parameter

Table 6.37: Error messages

6.3. Calendar 115

• You cannot delete the default calendar.

• To delete a calendar or entries from a calendar, the corresponding calendar file must exist on the device.

The following are the examples for using Delete:

Synchronous

event_id = calendar_handle.call(’Delete’, {’Type’: u’CalendarEntry’, ’id’: del_id_list})

Asynchronous

event_id = calendar_handle.call(’Delete’, {’Type’: u’CalendarEntry’, ’id’: del_id_list}, callback= del_callback)

where del_callback is a user defined callback function.

The following table summarizes the specification of Delete:

Interface IDataSource
Description Deletes the specified calendar from the Device or, one or

more entries / instances from a specific calendar file.
Response Model Synchronous for type Calendar and both synchronous

and asynchronous for type CalendarEntry.
Pre-condition IDataSource interface is loaded.
Post-condition Nil

Input Parameters for Calendar

Input parameter specifies the type on which the operation is performed and the details of the particular type.

Name Type Range Description
Type unicode string Calendar Performs the operation on all available cal-

endars if the type is Calendar.
Data map CalendarName: unicode string Deletes the given calendar. You cannot

delete the default calendar.

Table 6.38: Input parameters for Calendar Delete

Output Parameters for Calendar

Output parameter contains ErrorCode and an optional ErrorMessage, which is displayed when the
operation fails.

Name Type Range Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.39: Output parameters for Calendar Delete

Input Parameters for Calendar Entry

116 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Input parameter specifies the type on which the operation is performed and the details of the particular type.

Name Type Range Description
Type unicode string CalendarEntry Performs the operation on entries of

the specified calendar, if the type is
CalendarEntry.

Data map [CalendarName]:
unicode string
[IdList] or [LocalIdList]:
List of unicode string
[StartRange]: datetime
[EndRange]: datetime
[DeleteAll]: bool

Uses the default calendar if the
CalendarName is not specified.
You can specify either IdList
or LocalIdList with Star-
tRange or EndRange or, both.
Deletes the instances within the spec-
ified range if range is specified. Deletes
entries that match the IdList or
LocalIdList if no range is specified.
Deletes all entries within the specified
calendar if the DeleteAll field is set.

One of the fields from the set IdList
or LocalIdList, StartRange,
EndRange, and DeleteAll must be
passed to delete entries. If not, error is
returned. Invalid id or LocalIds from
list are ignored.

Table 6.40: Input parameters for Calendar Entry Delete

Output Parameters for Calendar Entry

Output parameter contains ErrorCode, and an ErrorMessage, which is displayed when the operation fails.

Name Type Range Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.41: Output parameters for Calendar Entry Delete

Errors

The following table lists the errors and their values:

Error code value Description
1000 Invalid service argument
1004 Service not supported
1012 Item not found

Table 6.42: Error codes

Error Messages

The following table lists the errors messages and their description:

Example

6.3. Calendar 117

Error messages Description
Calendar:Delete:Type is invalid Delete called with invalid Type
Calendar:Delete:CalendarName is missing Delete (type Calendar) called without

passing CalendarName
Calendar:Delete:CalendarName is invalid Invalid type is passed for

CalendarName
Calendar:Delete:StartRange is invalid Invalid type is passed for StartRange

parameter
Calendar:Delete:EndRange is invalid Invalid type is passed for EndRange pa-

rameter
Calendar:Delete:DeleteAll is invalid Invalid type is passed for DeleteAll pa-

rameter
Calendar:Delete:IdList is invalid Invalid type is passed for IdList param-

eter
Calendar:Delete:LocalIdList is invalid Invalid type is passed for LocalIdList

parameter
Calendar:Delete:Data is missing Delete (type CalendarEntry) called

with invalid delete Data
Calendar:Delete:Data is invalid Invalid type is passed for Data parameter

Table 6.43: Error messages

The following sample code illustrates how to delete a specified calendar entry in asynchronous mode:

import scriptext
import e32

Using e32.Ao_lock() so that the main function can wait
till the callback is hit.
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def del_callback(trans_id, event_id, input_params):

if event_id != scriptext.EventCompleted:
Check the event status

print "Error in the operation"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message is: " + input_params["ReturnValue"]["ErrorMessage"]
elif event_id == scriptext.EventCompleted:

print "Entry deleted successfully."

lock.signal()

Returns the list of calendar id’s that needs to be deleted.
del_id_list = get_cal_del_id()

Load Calendar service
calendar_handle = scriptext.load(’Service.Calendar’, ’IDataSource’)
event_id = calendar_handle.call(’Delete’, {’Type’: u’CalendarEntry’, ’IdList’: del_id_list}, callback=del_callback)

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.3.4 Import

118 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Import is used to import entries into a calendar. The information must be imported from an ICal or VCal file.

Note: If entries are imported to a calendar other than the default one, the corresponding calendar file must exist
on the device.

The following the examples for using Import:

Synchronous

calendar_handle.call(’Import’, {’Type’: u’CalendarEntry’, ’FileName’: u’C:\\data\\input.txt’, ’Format’: u’VCal’})

Asynchronous

calendar_handle.call(’Import’, {’Type’: u’CalendarEntry’, ’FileName’: u’C:\\data\\input.txt’, ’Format’: u’VCal’}, callback= imp_callback))

where, imp_callback is an user defined callback function.

The following table summarizes the specification of Import:

Interface IDataSource
Description Imports the calendar entries from an input file.
Response Model Synchronous and asynchronous.
Pre-condition IDataSource interface is loaded.
Post-condition Nil
Note The specified calendar must exist.

Input Parameters

Input parameter specifies the Type and its details to import. Input parameter properties are Type and Data.

Name Type Range Description
Type unicode string CalendarEntry Performs the operation on calendar entries.
Data map [CalendarName]:

unicode string
Buffer or File-
Name: unicode string
Format: unicode string

Imports entries to a specified calendar or to the de-
fault calendar if not specified. CalendarName
must be in the format Drivexxx:FileNamexxx.
Either Buffer or FileName can be given.
FileName must contain the complete path of
the file. For example, C:¿\\data\\importfile.txt
Buffer or Filename holds the entries to be imported.
Format specifies the data format of buffer or file. Format
can have values ICal or VCal. ICal is supported from
Fifth Edition devices onwards.

Table 6.44: Input parameters Import

Output Parameters

Output contains ReturnValue. It also contains ErrorCode, and an ErrorMessage, if the operation fails.
ReturnValue contains the Ids of the entries imported.

Errors

The following table lists the errors and their values:

6.3. Calendar 119

Name Type Range Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.
ReturnValue iterator string An Iterate list of Ids of the entries success-

fully imported to the specified calendar file.
Note: The Id can repeat in case of Modifying en-
tries.

Table 6.45: Output parameters Import

Error code value Description
1000 Invalid service argument
1004 Service not supported

Table 6.46: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Calendar:Import:CalendarName is invalid Invalid type is passed for CalendarName
Calendar:Import:FileName is invalid Invalid type is passed for FileName or, FileName ex-

ceeds 239 characters
Calendar:Import:Buffer is invalid Invalid type is passed for Buffer
Calendar:Import:Type is invalid Import called with invalid Type
Calendar:Import:Data is missing Data parameter is missing
Calendar:Import:Data is invalid Invalid type is passed for Data parameter
Calendar:Import:Format is missing Import Format parameter not specified.
Calendar:Import:FileName is missing FileName is not passed

Table 6.47: Error messages

Example

The following sample code illustrates how to import a calendar entry:

Load Calendar service
calendar_handle = scriptext.load(’Service.Calendar’, ’IDataSource’)

try:
calendar_handle.call(’Import’, {’Type’: u’CalendarEntry’, ’FileName’: u’C:\\Data\\importfile.txt’, ’Format’: u’VCal’ })

except scriptext.ScriptextError:
print ’Error in servicing the request’

else:
print "Import request successfully complete!"

6.3.5 Export

Export is used to export the calendar entries to an output file. The information is exported to an ICal or VCal
file. This method can be called both in synchronous and asynchronous mode.

The following are the examples for using Export:

120 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Synchronous

calendar_handle.call(’Export’, {’Type’: u’CalendarEntry’, ’FileName’: u’C:\\Data\\output.txt’, ’Format’: u’VCal’})

Asynchronous

calendar_handle.call(’Export’, {’Type’: u’CalendarEntry’, ’FileName’: u’C:\\data\\output.txt’, ’Format’: u’VCal’}, callback= exp_callback))

where, exp_callback is an user defined callback function.

The following table summarizes the specification of Export:

Interface IDataSource
Description Exports the calendar entries to an output file.
Response Model Synchronous and asynchronous
Pre-condition IDataSource interface is loaded.
Post-condition Nil
Note The specified calendar must exist.

Input Parameters

Input parameter specifies the Type and its details to export. Input parameter properties are Type and Data.

Name Type Range Description
Type unicode string CalendarEntry Performs the operation on calendar entries.
Data map [CalendarName]:

unicode string
Idlist or LocalIdList:
List of unicode strings
FileName: unicode string
Format: unicode string

Exports entries to the default calendar if
not specified. CalendarName must be
in the format Drivexxx:FileNamexxx.

Exports entries in the given format. Format
can have values ICal or VCal. ICal is sup-
ported from Fifth Edition devices onwards.

IdList or LocalIdList is a list of
Ids of the entries to be exported. Specify
either IdList or LocalIdList. It
exports all the entries from the specified
calendar file if the list is not speci-
fied. Also, it exports only for valid
Ids and ignores the remaining Ids.

Entries are exported to the file if
FileName is specified else, 8-bit
Data is returned as output.

Table 6.48: Input parameters Export

Output Parameters

6.3. Calendar 121

Output contains the requested information ReturnValue. It also contains ErrorCode, and an
ErrorMessage, if the operation fails.

Name Type Range Description
ErrorCode int NA Service specific error code on failure of the oper-

ation.
ErrorMessage string NA Error description in Engineering English.
ReturnValue
(Applicable in case
FileName is not
specified in data)

8-bit data NA Contains the exported entries in the specified for-
mat. It is applicable if FileName is not specified
in input parameters.

Table 6.49: Output parameters Export

Errors

The following table lists the errors and their values:

Error code value Description
1000 Invalid service argument
1004 Service not supported

Table 6.50: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Calendar:Export:Type is invalid Export called with invalid Type
Calendar:Export:Data is missing Export called without passing input Data
Calendar:Export:Data is invalid Invalid type is passed for input Data pa-

rameter
Calendar:Export:Format is missing Export Format not passed in Data.
Calendar:Export:FileName is invalid Invalid type for FileName parameter or,

FileName exceeds 239 characters
Calendar:Export:IdList is invalid Invalid type for input IdList parameter
Calendar:Export:LocalIdList is invalid Invalid type for input LocalIdList pa-

rameter
Calendar:Export:CalendarName is invalid Invalid type is passed for

CalendarName

Table 6.51: Error messages

Example

The following sample illustrates how to export a calendar entry:

122 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Load Calendar service
calendar_handle = scriptext.load(’Service.Calendar’, ’IDataSource’)

try:
calendar_handle.call(’Export’, {’Type’: u’CalendarEntry’, ’FileName’: u’C:\\Data\\importfile.txt’, ’Format’: u’VCal’ })

except scriptext.ScriptextError:
print ’Error in servicing the request’

else:
print "Export request successfully complete!"

6.3.6 RequestNotification

RequestNotification is used to notify the registered client when events such as entry creation, updation,
or deletion occurs in a specified calendar. If no calendar is specified, the default calendar is used. This is an
asynchronous method.

The following is an example for using RequestNotification:

event_id = calendar_handle.call("RequestNotification", {’Type’: u’CalendarEntry’}, callback=calendar_callback)

The following table summarizes the specification of RequestNotification:

Interface IDataSource
Description Notifies when add, delete, or modify is performed on the entries in the calendar store.
Response Model Asynchronous
Pre-condition IDataSource interface is loaded.
Post-condition Nil
Note The specified calendar must exist.

Input Parameters

Input parameter specifies the Type and its details to perform operation.

Name Type Range Description
Type unicode string CalendarEntry Performs the operation on calendar entries.
[Filter] map [CalendarName]:

unicode string
[LocalIdList]: List
of unicode strings
[EndRange]: datetime
[IncludeUndatedTodos]:
bool

If this entry is not specified then, notifies changes
to the default calendar. CalendarName
must be in the format Drivexxx:FileNamexxx.

LocalIdList specifies Ids for notification.
These are obtained by a call to Getlist. If it
is not specified all the entries are considered.

The StartRange and EndRange
fields specify the time range during
which notifications are required.

IncludeUndatedTodos specifies whether
notifications are required for ToDo entries that
have no date.

Table 6.52: Input parameters RequestNotification

6.3. Calendar 123

Output Parameters

Output parameter contains the type of modification performed on the entries in the Calendar store and the
LocalId of that entry. It also contains ErrorCode, and an ErrorMessage, if the operation fails.

Name Type Range Description
ErrorCode int NA Service specific error code on failure of the

operation.
ErrorMessage string NA Error description in Engineering English.
ReturnValue Iterator (map) ChangeType:

string: Add
Delete
Modify
Unknown
LocalId: string

The ChangeType field indicates
the type of modification made to
the entries in the calendar store.
The LocalId gives the Id of the entry
that is modified, added, or deleted.

Table 6.53: Output parameters RequestNotification

Errors

The following table lists the errors and their values:

Error code value Description
1000 Service argument out of range

Table 6.54: Error codes

Error Messages

the following table lists the error messages and their description:

Error messages Description
Calendar:RequestNotification:CalendarName is
invalid

Invalid type is passed for
CalendarName

Calendar:RequestNotification:Type is invalid RequestNotification called with
invalid Type

Calendar:RequestNotification:StartRange is
invalid

Invalid type for Filter:StartRange parame-
ter

Calendar:RequestNotification:EndRange is
invalid

IInvalid type for Filter:EndRange parame-
ter

Calendar:RequestNotification:IncludeUndatedTodos
is invalid

Invalid type for Filter: IncludeUndatedTo-
dos parameter.

Calendar:RequestNotification:FileName is
invalid

Invalid type for FileName parameter or,
FileName exceeds 239 characters

Calendar:RequestNotification:LocalIdList is
invalid

Invalid type for Filter:LocalIdList param-
eter or, LocalIdList contains invalid
data

Calendar:RequestNotification:Filter is invalid Invalid type for Filter parameter

Table 6.55: Error messages

Example

124 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext
import e32

lock = e32.Ao_lock()
calendar_handle = scriptext.load(’Service.Calendar’, ’IDataSource’)

def calendar_callback(trans_id, event_id, input_params):
if event_id != scriptext.EventCompleted:

Check the event status
print "Error in retrieving required info"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message is: " + input_params["ReturnValue"]["ErrorMessage"]
else:

print "Modification is: " + str(input_params["ReturnValue"]["ChangeType"])
lock.signal()

Make a request to get notification
event_id = calendar_handle.call("RequestNotification", {’Type’: u’CalendarEntry’}, callback=calendar_callback)

lock.wait()

6.3.7 Key Values

Calendar Entry

Fields applicable for a particular ’Type’ of entry are mentioned in Add Section, all other fields are ignored.

Repeat Rule Structure

Most the fields in the following table are applicable for specific ’Type’.

Note:

• Specify only Type and UntilDate for a ’Daily’ repeat.

• Specify Type, UntilDate, and DaysInWeek for a ’Weekly’ repeat rule.

• Specify Type, UntilDate, and MonthDays / DaysOfMonth for a ’Monthly’ repeat rule. The
WeekNum parameter can take values 1, 2, 3, 4 for the first, second, third, and fourth week of the month, or
-1 for the last week of the month.

• Specify Type, UntilDate, DaysOfMonth, and Month for a ’Yearly’ repeat rule. Only first entry in
DaysOfMonth is taken. If specified, DaysOfMonth and Month must be given together.

• If DaysInWeek, MonthDays, DaysOfMonth, or Month (whichever applicable for repeat rule ’Type’)
is not specified, it is calculated from Entry StartTime.

• Interval is an optional parameter for all types.

• UntilDate parameter is set to be the same value as specified for Third Edition and Third Edition FP1
onwards, it is modified internally to be the start time of the last instance of the repeat rule.
If UntilDate is not specified, it is taken as the maximum time.

Attendee Structure

Most the fields in the following table are applicable for specific ’Type’.

6.3. Calendar 125

Key Description
Type Specifies whether the entry is a meeting, to-do item, reminder, event or anniversary.
CalendarName Specifies Calendar Name. It must be given in the format Drivexxx:Filenamexxx.
Summary Holds the summary for the calendar entry.
SeqNum Holds the sequence number for the calendar entry, used in group scheduling. The

default value is 0.
StartTime Holds the start time for the calendar entry.
EndTime Holds the end time for the calendar entry.
Replication Specifies replication status of the entry

Open: No restriction on access, this is the default value.
Private: Data is private, no access.
Restricted: Data is confidential, restricted access.

Method The method property of an entry (only for ICalendar entry).
None: This is the default value if not specified.
Publish
Request
Reply
Add
Cancel
Refresh
Counter
DeclineCounter

Description Holds the description for the calendar entry.
Priority Specifies the priority for the calendar entry (range is 0-255, default value is 0).
AlarmTime Holds the alarm time for the calendar entry, must be before StartTime entry. For

entry type ToDo, it must be before EndTime.
Location Holds the location name for an entry of type Meeting.
Status Specifies the status for the calendar entry.

Tentative
Confirmed
TodoNeedsAction
TodoCompleted
TodoInProcess
Cancelled
NullStatus: This is the default value, if not specified.

RepeatDates Contains a list of out-of-sequence dates on which the calendar entry repeats.
ExDates Contains a list of exception dates that is, occurrences in the original schedule that have

been removed and may be replaced with a different occurrence.
PhoneOwner Holds the details of the phone owner.
Organizer Holds the organizer information, applicable for an entry of type Meeting.
Attendees Holds the attendee information, applicable for an entry of type Meeting. For more

information, see Attendee structure.
RepeatRule Contains name-value pairs. For more information, see Repeat Rule Structure.

Table 6.56: Key value- Calendar Entry

126 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Key Type Description
Type int Specifies the type of repeat rule:

(Daily)
(Weekly)
(Monthly)
(Yearly)

[StartDate] datetime Start Time. If not specified Entry StartTime is taken.
[UntilDate] datetime Holds the end date until which this entry will repeat.
[Interval] int Specifies the interval between instances of a repeating entry.
[DaysInWeek] List List of integers. Specifies on what days of the week the rule must repeat.

Values are 0(Monday) to 6(Sunday).
[MonthDays] List List of integers. Specifies on what days of the month (0-30) the rule

must repeat.
[DaysOfMonth] List List of maps each having the format:

Day (0 - 6): 32 bit int
WeekNum: 32 bit int

[Month] int Specifies the month for a yearly repeat rule. Values are 0(January) to
11(December).

Table 6.57: Key value- Repeat Rule Structure

Key Type Description
[CommonName]string Holds the common name for group scheduling.
[Role] string Specifies the role of a meeting participant. The possible values are:

Required
Optional
NonParticipant
Chair
The default value is Required.

Address string Specifies the email address of a meeting participant.
[Status] string Specifies the status of an attendee. The possible values are:

NeedsAction
Accepted
Tentative
Confirmed
Declined
Completed
Delegated
InProcess
The default value is NeedsAction

[Rsvp] Boolean Specifies whether or not a response is requested for this attendee. De-
fault value is 0(False).

Table 6.58: Key value- Attendee Structure

6.3. Calendar 127

6.4 Contacts

The Contacts service enables Python applications to access and manage contacts information. This information
can reside in one or more contacts databases stored on a device or, in the SIM card database.
It enables applications to perform the following operations on the Contacts Database:

• Retrieve contact or group information

• Add contact or group

• Edit a particular contact or group

• Import and export a contact

• Delete a contact or group item

The following sample code is used to load the provider:

import scriptext
contact_handle = scriptext.load(’Service.Contact’, ’IDataSource’)

The following table summarizes the Contacts Interface:

Service provider Service.Contact
Supported interfaces IDataSource

The following table lists the services available in Calendar:

Services Description
GetList 6.4.1 Retrieves a list of contacts or groups in the default or specified database,

also used to get the list of existing databases.
Add 6.4.2 Adds contact or group to the specified or default contacts database.
Delete 6.4.3 Deletes an array of contacts or groups from the specified or default con-

tacts database.
Import 6.4.4 Imports contact to the specified contacts database.
Export 6.4.5 Exports the selected item from the contacts database specified as VCard.
Organise 6.4.6 Associate or Disassociate a list of contacts in a database to and from a

group.

6.4.1 GetList

GetList retrieves a list of contacts, contact groups, or contacts databases. Contacts and contact groups are
retrieved from the specified contacts database. If no database is specified, from the default one. This method can
be called both in synchronous and asynchronous mode.

Note: Calls that retrieve a list of databases must be synchronous.

The following are the examples for using GetList:

Synchronous

list_contacts = contacts_handle.call(’GetList’, {’Type’: u’Contact’, ’Filter’: {’SearchVal’: u’Daniel’}})

Asynchronous

128 Chapter 6. scriptext - Platform Service API Usage from Python runtime

event_id = contacts_handle.call(’GetList’, {’Type’: u’Contact’, ’Filter’:{’SearchVal’: u’Craig’}}, callback=get_list)

where, get_list is a user defined function.

The following table summarizes the specification of GetList:

Interface IDataSource
Description Retrieves a list of contacts or groups in the default or specified database,

also used to get the list of existing databases.
Response Model Synchronous and asynchronous in case of Third Edition

FP2 and Fifth Edition devices, except for GetList with
Type as Database, which will always be synchronous.

In case of Third Edition and Third Edition FP1 devices:
Synchronous for Get Single Contact and Group.
Asynchronous and synchronous for the rest of the functionality.

Pre-condition IDataSource interface is loaded.
Post-condition Nil

Input Parameters

GetList retrieves a list of contacts objects and metadata from the S60 messaging center based on Search or
Sort inputs. This is an object that specifies what contact information is returned and how the returned information
is sorted.

Output Parameters

Output parameter contains ReturnValue. It also contains ErrorCode and an ErrorMessage if the
operation fails. ReturnValue contains complete contact item, group, or database information requested by
GetList.

Errors

The following table lists the errors and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to list full name of contact matched by last name in asynchronous
mode:

6.4. Contacts 129

Name Type Range Description
Type unicode string Contact

Group
Database

Operation is performed on the specified
type.

[Filter] Contact (map)
[DBUri]: uni-
code string
[id]: uni-
code string
[SearchVal]:
unicode string
Group (map)
[DBUri]: uni-
code string
[Id]: unicode string
Database
No map required.

DBUri: Database on which
search must be performed.
Id: Id is the unique iden-
tifier of the contact item or
group to be retrieved. If Id
is specified, SearchVal
and DBUri are not required,
and they will be ignored.

SearchVal: Value
searched for in the given
DBUri. It cannot ex-
ceed 255 characters.
If Filter is not supplied
and Type is Contact, then
it gets all the contacts of
the default database.

If Filter is not supplied and
Type is Group, then it gets
all the groups of the default
database.

SearchVal: Value searched for in
the given DBUri (If default database
is not specified). If SearchVal
is not specified then, it loads all
the contacts in the database.

SearchVal is looked for in first name
and last name fields in case of Third
Edition FP2 and Fifth Edition devices
and it looks in all fields in case of Third
Edition and Third Edition FP1 devices.

With Type as Contact, it retrieves
the list of contacts based on the
Filter map input (if provided).

With Type as Group, it gets a list of
all the groups in the default database,
if Filter is not specified. If Filter is
specified, and Id is given, it fetches the
group that the Id represents (DBUri
is ignored in this case). Searching for
a group by its name is not supported.

With Type as Database, it gets the list of
all the open databases.

Table 6.59: Input parameters Getlist

130 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when the

operation fails.
ErrorMessage string NA Error Description in Engineering English.
ReturnValue iterable list of

maps
Contact (map) 6.61
Group (map) 6.62
Database (map)
DBUri: string

Every Next operation on the
iterator returns a map.
Each map contains complete con-
tact item/group/database information.

Every Next operation on a
contact gives a map with:

id: It is a unique identifier for the
contact that the map represents.
Key1, Key2..: Gets as many keys available
for a particular contact. For more information
on keys, refer the section Key Values 6.4.7.
Label and value give the information for the key.
Next: In case, the key has multiple val-
ues, then it is added as another map.

Every Next operation on group gives a map with:

id: It is a unique identifier for the
group that the map represents.
GroupLabel: Label to the group.
Contents: List of ids of the contacts that
belong to the particular group. For example,
Contact Id1, Contact Id2.
Every Next operation on
database gives a map with:
DBUri: Uri of the database that is represented by
the particular map.

Table 6.60: Output parameters for GetList

Key Value NA NA
id string NA NA
Key1 map NA NA
NA Label NA string
NA Value NA string
Key2 map NA NA
NA Label string NA
NA Value string NA
NA Next map NA
NA NA Label string
NA NA Value string
NA NA Next map

Table 6.61: Contact(map)

6.4. Contacts 131

Key Value
id string
GroupLabel string
Contents List
NA Contact id1
NA Contact id2
NA

Table 6.62: Group(map)

Error code value Description
0 Success
1002 Bad argument type

Table 6.63: Error codes

Error messages Description
Contacts:GetList:Type is
missing

Indicates Type is missing

Contacts:GetList: Invalid
value for Type, Must be
Contact/Group/Database

Indicates invalid value for Type

Contacts:GetList:Invalid
Sort Type, Map is required

Indicates that the sort order type passed is invalid, map is
expected

Contacts:GetList:Sort Order
Value is not a String

Indicates that the value for order must be a string

Contacts:GetList:Invalid
Type of Filter, Map is
required

Indicates that the value for Filter must be a map

Contacts:GetList:Wrong Type
of Sort Order value

Indicates that sort order value is not ascending or de-
scending

Contacts:GetList:Wrong Type
of Search value

Indicates that search value is not a string

Contacts:GetList:Wrong Type
of ContentType

Indicates that the Type is not a string.

Table 6.64: Error messages

132 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext
import e32

Using e32.Ao_lock() to make main function wait till callback is hit
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def get_list(trans_id, event_id, input_params):

if event_id != scriptext.EventCompleted:
Check the event status

print "Error in retrieving required info"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:
print "Error message:" + input_params["ReturnValue"]["ErrorMessage"]

else:
print "The contacts matching are"
for i in input_params["ReturnValue"]:

print i["FirstName"]["Value"] + i["LastName"]["Value"]
lock.signal()

Load contacts module
contacts_handle = scriptext.load("Service.Contact", "IDataSource")

event_id = contacts_handle.call(’GetList’, {’Type’: u’Contact’, ’Filter’:{’SearchVal’: u’Craig’}}, callback=get_list)

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.4.2 Add

Add is used to add a contact or contact group to a contacts database. If the contact or contact group already exists
in the database, it is replaced with the new entry.

You can use this method to both add and edit contacts and contact groups. The data is added to the specified
database. When no database is specified, the data is added to the default database. If the default database does
not exist, Add creates a new database. This method can be called both in synchronous and asynchronous mode.

The following is an example for using Add:

Synchronous

contacts_handle.call(’Add’, {’Type’: u’Contact’, ’Data’:
{’FirstName’: {’Label’: u’first name’, ’Value’: u’Daniel’},
’LastName’: {’Label’: u’last name’, ’Value’: u’Craig’},
’MobilePhoneGen’: {’Label’: u’mobile’, ’Value’: u’9008025211’},
’EmailHome’: {’Label’: u’email’, ’Value’: u’dcraig@ford.com’}}})

The following table summarizes the specification of Add:

Input Parameters

Input parameter contains the contact information to add or edit and also the target database.

Output Parameters

The output contains ErrorCode and an ErrorMessage if the operation fails.

6.4. Contacts 133

Interface IDataSource
Operation Adds contact/group to the specified/default contacts database.
Response Model Synchronous and asynchronous for Third Edi-

tion FP2 and Fifth Edition devices.
Synchronous for Third Edition and Third Edition FP1 de-
vices.

Pre-condition IDataSource interface is loaded. For editing an existing con-
tact/group, the specified Id must exist. You must use GetList
to retrieve the Id for editing.

Post-condition Adds a new contact item to the database in case of add and up-
dates an existing contact in case of edit.

Name Type Range Description
Type unicode string Contact

Group
Operation performed on the specified
Type.

Data Contact (map) 6.66
Group (map)
[DBUri]: string
[id]: string
GroupLabel:
string

All string values in
the map are unicode.
Key 1, Key 2, and
so on are based on
the keys supported.
id: For Type
Contact, Id is
the unique identi-
fier for the contact
to be modified.

id: for Type
Group, Id is the
unique identifier
for the group to
be modified.
GroupLabel:
Label for the group
being added or
modified.

Information about the contact/group
to be added to the contacts database.

You must not set the Id/Id field to
add a new entry and also, must not
modify the value of the Id/Id field
when editing an existing entry.

You must use the id that is
given to it by GetList sapi.

In case of editing an existing con-
tact, it overwrites the existing entry of
that id completely. Edit operation is
not editing of selected fields, it is re-
placement of the entire contact/group.

If string value given for Value key is
empty, then that field is not added to the
contact. Rest of the fields are still added.

If the database does not support Label then,
the Label is ignored if it is given (sim
database does not support Label).

Table 6.65: Input parameters for Add

Key Value NA NA
[DBUri] string NA NA
[id] string NA NA
Key1 map NA NA
NA Label NA string
NA Value NA string
Key2 map NA NA
NA Label string NA
NA Value string NA
NA Next map NA

Table 6.66: Contact(map)

134 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when the operation fails.
ErrorMessage string NA Error Description in Engineering English.

Table 6.67: Output parameters for Add

Errors

The following table lists the errors and their values:

Error code value Description
0 Success
1002 Bad argument type
1004 Service not supported
1005 Service in use
1011 Access denied

Table 6.68: Error codes

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to add a contact information:

Load contacts module
contacts_handle = scriptext.load(’Service.Contact’, ’IDataSource’)
try:

contacts_handle.call(’Add’, {’Type’: u’Contact’, ’Data’:
{’FirstName’: {’Label’: u’first name’, ’Value’: u’Daniel’},

’LastName’: {’Label’: u’last name’, ’Value’: u’Craig’},
’MobilePhoneGen’: {’Label’: u’mobile’, ’Value’: u’9008025211’},
’EmailHome’: {’Label’: u’email’, ’Value’: u’dcraig@ford.com’}}})

print "Contact added Successfully"

except scriptext.ScriptextError, err:
print "Error adding the contact : ", err

6.4.3 Delete

Delete is used to delete one or more contacts or contact groups from a contact database. It deletes data from a
specified database or from the default database if you do not specify a database. This method can be called both
in synchronous and asynchronous mode.

The following is an example for using Delete:

Asynchronous

event_id = contacts_handle.call(’Delete’, {’Type’: u’Contact’, ’Data’: {’IdList’: [req_id]}}, callback=del_contact)

6.4. Contacts 135

Error messages Description
Contacts:Add:Type is missing Indicates Type is missing
Contacts:Add:Invalid Type,
must be Contact/Group

Indicates invalid value for Type, can have values Con-
tact/Group only.

Contacts:Add:Invalid Sort
Type, Map is required

Indicates that the sort order type passed is invalid, map is
expected

Contacts:Add:Add Data is
Missing

Indicates that the key Data is missing.

Contacts:Add:Add data Map is
Missing

indicates that the value of the Data is missing.

Contacts:Add:Group Label is
Missing

Indicates that the label for group is missing.

Contacts:Add:Mandatory
Argument is not present

Indicates not all mandatory parameters are present.

Contacts:Add:Type of Contact
Id is wrong

Indicates that Contact Id value is not a string.

Contacts:Add:Invalid Type of
Data, Map is required

Indicates that Data value must be of Type map.

Contacts:Add:Invalid Type of
Field value, Map is required

Indicates that value of a given Key (for example: Key1,
Key2), is not a Map.

Contacts:Add:Invalid Type
of NextField value, Map is
required

Indicates that value of Next field is not a Map.

Contacts:Add:Invalid Type of
Id

Indicates that value Group Id is not a string.

Contacts:Add:Invalid Type of
GroupLabel

Indicates that value Group Label is not a string.

Contacts:Add:Wrong Type of
ContentType

Indicates that the value Type is not a string.

Contacts:Add:Atleast one
field is required

Indicates that atleast one field must be specified.

Contacts:Add:Group Label is
Empty

Indicates that the mandatory input parameter
GroupLabel is an empty string.

Contacts:Add:Invalid Field
Key:fieldkey

Indicates that the key fieldkey, is not a valid.

Contacts:Add:Field Key
Not Supported on this
Database:fieldkey

Indicates that the fieldkey is not supported on the given
database.

Contacts:Add:Field Value too
long for key:fieldkey

Indicates that the fieldkey has a greater length than the
maximum allowed for the particular key.

Table 6.69: Error messages

136 Chapter 6. scriptext - Platform Service API Usage from Python runtime

where, del_contact is a user defined callback function.

The following table summarizes the specification of Delete:

Interface IDataSource
Operation Deletes an array of contacts/groups from the specified or default con-

tacts database.
Response Model Asynchronous and synchronous for Third Edi-

tion FP2 and Fifth Edition devices.
Synchronous for Third Edition and Third Edition FP1 devices.

Pre-condition IDataSource interface is loaded. Contact must exist in the contacts
database. The IDs can be obtained from GetList.

Post-condition Nil

Input Parameters

The following table describes input parameter. The default contacts database is cntdb://c:contacts.cdb. The SIM
card database is sim://global adn. The contacts or contacts groups to be deleted must exist in the specified
database. You must use GetList to retrieve the IDs of the entries you want to delete.

Name Type Range Description
Type unicode string Contact

Group
Operation is performed on the specified
type.

Data Contact or
Group (map)
[DBUri]: uni-
code string
IdList: List
[id1, id2, id3]

All string values in
the map are unicode.

IdList is a mandatory field. You
must specify the contact ids or group
ids to delete a set of contacts/groups
from the contacts database given by
the list. For example, id1, id2, id3
are the ids of the contacts/groups.

DBUri is optional, it operates on the spec-
ified database or on the default database, if
specified.

Table 6.70: Input parameters for Delete

Output Parameters

The output is an object, which contains ErrorCode and an ErrorMessage if the operation fails.

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when the operation

fails and SErrNone on success.
ErrorMessage string NA Error Description in Engineering English.

Table 6.71: Output parameters for Delete

Errors

The following table lists the errors and their values:

Error Messages

6.4. Contacts 137

Error code value Description
0 Success
1002 Bad argument type
1004 Service not supported
1005 Service in use
1011 Access denied

Table 6.72: Error codes

Error messages Description
Contacts:Delete:Type is
missing

Indicates Type is missing

Contacts:Delete:Invalid
Type, must be Contact/Group

Indicates invalid value for Type, if it is not Contact or
Group.

Contacts:Delete:Delete data
Missing

Indicates that the key Data is missing.

Contacts:Delete:Invalid Type
of Data, Map is required

Indicates that the value of the Data is not present and Map
is expected.

Contacts:Delete:List of Ids
is Missing

Indicates that the list of Contact Ids to be deleted is miss-
ing.

Contacts:Delete:Type of
IdList is wrong, List is
required

Indicates that value of IdList is not a List.

Contacts:Delete:Invalid Type
of Id

Indicates that Contact/Group Id is not a string.

Contacts:Delete:Wrong Type
of ContentType

Indicates that the value for Type is not a string.

Contacts:Delete:Mandatory
Argument is not present

Indicates that Type is not a string.

Table 6.73: Error messages

138 Chapter 6. scriptext - Platform Service API Usage from Python runtime

The following table lists the error messages and their description:

Example

The following sample code illustrates how to delete a contact:

import scriptext
import e32

Using e32.Ao_lock() to make main function wait till callback is hit
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def del_contact(trans_id, event_id, input_params):

if event_id != scriptext.EventCompleted:
Check the event status

print "Error in deleting the contact"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message:" + input_params["ReturnValue"]["ErrorMessage"]
else:

print "The contact is deleted"
lock.signal()

Load contacts module
contacts_handle = scriptext.load("Service.Contact", "IDataSource")

list_contacts = contacts_handle.call(’GetList’, {’Type’: u’Contact’, ’Filter’: {’SearchVal’: u’Paulo’}})
for i in list_contacts:

req_id = i[’id’]

event_id = contacts_handle.call(’Delete’, {’Type’: u’Contact’, ’Data’:{’IdList’: [req_id]}}, callback=del_contact)

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.4.4 Import

Import is used to import a contact to a contacts database. The information must be imported from a VCard file.
This API can be called both in synchronous and asynchronous mode.

The following is an example for using Import:

Asynchronous

event_id = contacts_handle.call(’Import’, {’Type’: u’Contact’,’Data’:{’SourceFile’:u’c:\\Data\\python\\VCARD.txt’}},callback=get_import)

where, get_import is a user defined callback function.

The following table summarizes the specification of Import:

Input Parameters

Input parameter specifies the contact to import and optionally the target database.

Example of vcard format:

6.4. Contacts 139

Interface IDataSource
Operation Imports contact to the specified contacts database.
Response Model Asynchronous and synchronous for Third

Edition FP2 and Fifth Edition devices.
Synchronous for Third Edition and Third Edition
FP1 devices.

Pre-condition IDataSource interface is loaded.
Post-condition Updates database with imported contact.

Name Type Range Description
Type unicode string Contact Operation is performed on the specified

type.
Data map

[DBUri]: uni-
code string
SourceFile:
unicode string

All string values in the
map are unicode.

Note:
SourceFile can have any
extension or no extension.
SourceFile has to
be in Vcard format.

Example of vcard for-
mat is given below

DBUri: Imports contact to the
specified database or to the de-
fault database if not specified.

SourceFile: Imports contact from the
specified file. SourceFile is the com-
plete path to the file. It cannot be greater
than 256 characters.

Table 6.74: Input parameters Import

BEGIN:VCARD
VERSION:2.1
N:Kent; Clark
FN:Clark Kent
ORG:Superman Inc.
TITLE:Super Man
TEL;WORK:VOICE:(111) 556-9898
TEL;HOME;VOICE:(090) 556-6767
ADR;WORK:;;3rd Rock from Sun;Solar System;Milky Way
LABEL;WORK;ENCODING=QUOTED-PRINTABLE:3rd Rock from Sun=0D=0ASolar System=0D=0AMilky Way
ADR;HOME:;;Krypton
LABEL;HOME;ENCODING=QUOTED-PRINTABLE:Krypton
EMAIL;PREF;INTERNET:clarkkent@krypton.com
REV:2008042T195243Z
END:VCARD

Output Parameters

The output is an object, which contains ErrorCode and an ErrorMessage if the operation fails.

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when the operation

fails and SErrNone on success.
ErrorMessage string NA Error Description in Engineering English.

Table 6.75: Output parameters for Import

140 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Errors

The following table lists the errors and their values:

Error code value Description
1002 Bad argument type
1011 Access denied
1017 Path not found

Table 6.76: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Contacts:Import:Type is
missing

Indicates Type is missing

Contacts:Import:Invalid
Type, it must be Contact

Indicates invalid value for Type, it can be only Contact.

Contacts:Import:Import data
Missing

Indicates that the key Data is missing.

Contacts:Import:Invalid Type
of Data, Map is required

Indicates that the value of the Data is not a Map.

Contacts:Import:Import
Source Filename is Missing

Indicates the argument to signify the filename of the im-
ported file is missing.

Contacts:Import:Import
Source File is not a String

Indicates that the filename specified is not a string.

Contacts:Import:Wrong Type
of ContentType

Indicates that the value for Type is not a string.

Contacts:Import:Mandatory
Argument is not present

Indicates that not all mandatory parameters are present.

Contacts:Import:Import
DataBaseUri is not a String

Indicates that the uri specified is not a string.

Contacts:Import:Filename too
long

Indicates that filename has exceeded 256 characters.

Table 6.77: Error messages

Example

The following sample code illustrates how to import contacts from a VCard format file:

6.4. Contacts 141

import scriptext
import e32

Using e32.Ao_lock() to make main function wait till callback is hit
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def get_import(trans_id, event_id, input_params):

if event_id != scriptext.EventCompleted:
Check the event status

print "Error in retrieving required info"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message:" + input_params["ReturnValue"]["ErrorMessage"]
else:

print "The contacts are imported"
lock.signal()

Load contacts module
contacts_handle = scriptext.load("Service.Contact", "IDataSource")

event_id = contacts_handle.call(’Import’, {
’Type’: u’Contact’,
’Data’:{’SourceFile’: u’c:\\Data\\python\\VCARD.txt’}}, callback=get_import)

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.4.5 Export

Export is used to export a contact from a contacts database. The information is exported to a vCard file. This
API can be called both in synchronous and asynchronous mode.

The following is an example for using Export:

Asynchronous

event_id = contacts_handle.call(’Export’, {’Type’: u’Contact’,’Data’: {’DestinationFile’: u’c:\\Data\\python\\contactlist.vcf’, ’id’: unicode(req_id)}}, callback=export_contact)

where, export_contact is a user defined callback function.

The following table summarizes the specification of Export:

Interface IDataSource
Operation Exports the selected item from the contacts database specified as VCard.
Response Model Asynchronous and synchronous for Third Edi-

tion FP2 and Fifth Edition devices.
Synchronous for Third Edition and Third Edition FP1 devices.

Pre-condition Valid IDataSource interface is loaded.
Valid contact store must exist.
The specified contact ID, retrieved using GetList, must be available.

Post-condition Exports contact to the specified file and creates a file in the specified
location.

142 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Input Parameters

The following table describes input parameter properties:

Name Type Range Description
Type unicode string Contact Operation is performed on the specified

type.
Data map

[DBUri]: uni-
code string
DestinationFile:
unicode string
id: unicode string

All string values in
the map are unicode.

Note:
DestinationFile
can have any exten-
sion or no extension,
usually it is .vcf
DestinationFile
is of Vcard format.

Example of vcard
formatis given below

If complete path is
not specified, the file
is created in private
folder of the process.

DBUri: Exports contact from the
specified database or to the de-
fault database if not specified.

DestinationFile: Exports con-
tact to the specified file. It can-
not be greater than 256 characters.

id: Exports the contact item with the spec-
ified id.

Table 6.78: Input parameters Export

BEGIN:VCARD
VERSION:2.1
N:Kent; Clark
FN:Clark Kent
ORG:Superman Inc.
TITLE:Super Man
TEL;WORK:VOICE:(111) 556-9898
TEL;HOME;VOICE:(090) 556-6767
ADR;WORK:;;3rd Rock from Sun;Solar System;Milky Way
LABEL;WORK;ENCODING=QUOTED-PRINTABLE:3rd Rock from Sun=0D=0ASolar System=0D=0AMilky Way
ADR;HOME:;;Krypton
LABEL;HOME;ENCODING=QUOTED-PRINTABLE:Krypton
EMAIL;PREF;INTERNET:clarkkent@krypton.com
REV:2008042T195243Z
END:VCARD

Output Parameters

The output is an object, which contains ErrorCode and an ErrorMessage if the operation fails.

Errors

The following table lists the errors and their values:

Error Messages

6.4. Contacts 143

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when the operation

fails and SErrNone on success.
ErrorMessage string NA Error Description in Engineering English.

Table 6.79: Output parameters for Export

Error code value Description
1002 Bad argument type
1010 Entry exists
1012 Item not found

Table 6.80: Error codes

The following table lists the error messages and their description:

Error messages Description
Contacts:Export:Type is
missing

Indicates Type is missing

Contacts:Export:Invalid
Type, it must be Contact

Indicates invalid value for Type, it can be only Contact.

Contacts:Export:Export data
Missing

Indicates that the key Data is missing.

Contacts:Export:Invalid Type
of Data, Map is required

Indicates that the value of the Data is not a Map.

Contacts:Export:Export
Destination Filename is
Missing

Indicates the argument to signify the filename to which
contact is to be exported is missing.

Contacts:Export:Contact Id
to be exported is missing

Indicates that the id of the contact to be exported is miss-
ing.

Contacts:Export:Wrong Type
of ContentType

Indicates that the value for Type is not a string.

Contacts:Export:Destination
Filename is of wrong Type

Indicates that the filename is not a string.

Contacts:Export:Id is of
wrong Type

Indicates that the id is not a string.

Contacts:Export:Mandatory
Argument is not present

Indicates that not all mandatory arguments are present.

Contacts:Export:Export
DataBaseUri is not a String

Indicates that the uri specified is not a string.

Contacts:Export:Filename too
long

Indicates that filename has exceeded 256 characters.

Table 6.81: Error messages

Example

The following sample code illustrates how to export contacts to a file in VCard format:

144 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext
import e32

Using e32.Ao_lock() to make main function wait till callback is hit
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def export_contact(trans_id, event_id, input_params):

if event_id != scriptext.EventCompleted: # Check the event status
print "Error in retrieving required info"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message:" + input_params["ReturnValue"]["ErrorMessage"]
else:

print "The contact is exported"
lock.signal()

Load contacts module
contacts_handle = scriptext.load("Service.Contact", "IDataSource")

list_contacts = contacts_handle.call(’GetList’, {’Type’: u’Contact’, ’Filter’: {’SearchVal’: u’Clark’}})
for i in list_contacts: req_id = i[’id’]

event_id = contacts_handle.call(’Export’, {’Type’: u’Contact’, ’Data’: {’DestinationFile’: u’c:\\Data\\python\\contactlist.vcf’, ’id’: unicode(req_id)}}, callback=export_contact)

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.4.6 Organise

Organise is used to add contacts to a contact group (association) or remove contacts from a contact group
(disassociation). The operation is performed on the specified database or, if no database is specified, on the
default one.

This method can be called in both synchronous and asynchronous mode.

The following is an example for using Organise:

Asynchronous

event_id = contacts_handle.call(’Organise’, {’Type’: u’Group’,’Data’: {’id’: unicode(req_groupid[0]),’IdList’: [req_id]}, ’OperationType’: u’Associate’},callback=export_contact)

where, export_contact is a user defined function.

The following table summarizes the specification of Organise:

Input Parameters

Input parameter specifies which contact group to organize.

Output Parameters

The output is an object, which contains ErrorCode and an ErrorMessage if the operation fails.

Errors

6.4. Contacts 145

Interface IDataSource
Operation Associates or disassociates a list of contacts in a database to and from a

group.
Response Model Asynchronous and synchronous for Third Edi-

tion FP2 and Fifth Edition devices.
Synchronous for Third Edition and Third Edition FP1 devices.

Pre-condition Valid IDataSource interface is loaded. The IDs specified for group
and contact must exist and can be retrieved using GetList.

Post-condition Contacts from the default or specified contacts database are associated/
disassociated to and from a group.

Name Type Range Description
Type unicode string Group Operation is performed on the specified

type.
Data map

[DBUri]: uni-
code string
id: unicode string
IdList: List
id1
id2 and so on

All string values in
the map are unicode.

id1, id2, ... are
strings. These are
obtained by calling
GetList.

DBUri: Organise groups in the
specified database or to the de-
fault database if not specified.

id: Associate or disassociate
contacts to the particular Id.

IdList: Organise a particular list of con-
tacts.

OperationType unicode string OperationType:
Associate
Disassociate

NA

Table 6.82: Input parameters Organise

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when the operation

fails and SErrNone on success.
ErrorMessage string NA Error Description in Engineering English.

Table 6.83: Output parameters for Organise

146 Chapter 6. scriptext - Platform Service API Usage from Python runtime

The following table lists the errors and their values:

Error code value Description
1002 Bad argument type
1011 Access denied

Table 6.84: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Contacts:Organise:Type is missing Indicates Type is missing
Contacts:Organise:Invalid Content
Type, it must be Group

Indicates invalid value for Type, it can be only Contact.

Contacts:Organise:Organise Data
Missing

Indicates that the key Data is missing.

Contacts:Organise:Invalid Type of
Data, Map is required

Indicates that the value of the Data is not a Map.

Contacts:Organise:List of Ids is
missing

Indicates that Contact id list is missing.

Contacts:Organise:Id is missing Indicates that Group id is missing.
Contacts:Organise:OperationType
is Missing

Indicates that OperationType is missing.

Contacts:Organise:Operation Type
is Wrong

Indicates that OperationType is not a string.

Contacts:Organise:Invalid
Operation Type

Indicates that the Operation type is neither associate nor
disassociate.

Contacts:Organise:Id type is
wrong

Indicates that the id is not a string.

Contacts:Organise:IdList type is
wrong

Indicates that IdList is not a of type List.

Contacts:Organise:Wrong Type of
ContentType

Indicates that the value for Type is not a string.

Contacts:Organise:Mandatory
Argument is not present

Indicates that not all mandatory arguments are present.

Contacts:Organise:Id List is
empty

Indicates that the mandatory Idlist is given but is empty.

Table 6.85: Error messages

Example

The following sample code illustrates how to associate or disassociate a contact from a group:

6.4. Contacts 147

import scriptext
import e32
Using e32.Ao_lock() to make main function wait till callback is hit
lock = e32.Ao_lock()
req_groupid = []

Callback function will be called when the requested service is complete
def export_contact(trans_id, event_id, input_params):

if event_id != scriptext.EventCompleted: # Check the event status
print "Error in retrieving required info"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message:" + input_params["ReturnValue"]["ErrorMessage"]
else:

print "The contact is organised"
lock.signal()

Load contacts module
contacts_handle = scriptext.load("Service.Contact", "IDataSource")

list_contacts = contacts_handle.call(’GetList’, {’Type’: u’Contact’, ’Filter’: {’SearchVal’: u’Clark’}})

for i in list_contacts: req_id = i[’id’]

list_groups = contacts_handle.call(’GetList’, {’Type’: u’Group’})

for j in list_groups:
req_groupid.append(j[’id’])

event_id = contacts_handle.call(’Organise’, {’Type’: u’Group’, ’Data’: {’id’: unicode(req_groupid[0]), ’IdList’: [req_id]}, ’OperationType’: u’Associate’}, callback=export_contact)

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.4.7 Key Values

For uri- cntdb://c:contacts.cdb:

• All keys are supported on S60 3rd Edition FP2 and S60 5th Edition devices.

• Keys documented in green are not supported in S60 3rd Edition and S60 3rd Edition FP1.

• Keys documented in blue are not supported in S60 3rd Edition only.

For uri- sim://global adn, which is supported only on 3.2 and 5.0:

• Keys documented in red are only supported.

Keys supported are dependent on the accessing database and not platform dependent.

The keys listed in the following table are a superset of all the keys supported on all Third Edition and Fifth
Edition platforms and different databases altogether. If you try to add an unsupported key on a given database
and a given platform, the API returns an error message.

Note: SyncClass field is added to the contact by default, with a Synchronisation label and private value.
(unless specified as public). All values other than private or public are stored as private.

148 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Key Description Max Length
LastName Last name field 50 (14 for sim)
FirstName First name field 50
Prefix Name prefix field 10
Suffix Name suffix field 10
SecondName Second name field 50
LandPhoneHome Home land phone number 48
MobilePhoneHome Home mobile phone number 48
VideoNumberHome Home video number field 48
FaxNumberHome Home FAX number 48
VoipHome Home VOIP phone number 100
EmailHome Home Email address 150
URLHome Home URL 1000
AddrLabelHome Home Address label 250
AddrPOHome Home address post office 20
AddrEXTHome Home address extension 50
AddrStreetHome Home address street 50
AddrLocalHome Home address local 50
AddrRegionHome Home address region 50
AddrPostCodeHome Home address post code 20
AddrCountryHome Home address country 50
JobTitle Job title field 50
CompanyName Company name field 50
LandPhoneWork Work land phone number 48
MobilePhoneWork Work mobile phone number 48
VideoNumberWork Work video number field 48
FaxNumberWork Work FAX number 48
VoipWork Work VOIP 100
EmailWork Work email id 150
URLWork Work URL field 1000
AddrLabelWork Work address label 250
AddrPOWork Work address post office 20
AddrEXTWork Work address extension 50
AddrStreetWork Work address street 50
AddrLocalWork Work address local field 50
AddrRegionWork Work address region 50
AddrPostCodeWork Work address post code 20
AddrCountryWork Work address country 50
LandPhoneGen General land phone number 48
MobilePhoneGen General mobile phone number 48
VideoNumberGen General video number 48
FaxNumberGen General FAX number 48
VOIPGen General VOIP 100
POC POC field (Push to Talk Over Cellular) 100
SWIS SWIS field (See What I See). 100
SIP SIP Identity field 100
EmailGen General Email id 150
URLGen General URL field 1000
AddrLabelGen General address label 250
AddrPOGen General address post office 20
AddrExtGen General address extension 50
AddrStreetGen General address street 50
AddrLocalGen General address local field 50
AddrRegionGen General address region 50
AddrPostCodeGen General address post code 20
AddrCountryGen General address country 50
PageNumber Pager number 48
DTMFString DTMF String 60
Date Date field This field is in TTime format
Note Note field 1000
Ringtone Ring tone field 256
MiddleName Middle name field 50
Department Department name field 50
AsstName Assistant name field 50
Spouse Spouse name field 50
Children Children field 50
AsstPhone Assistant phone number 50
CarPhone Car phone number 48
Anniversary Anniversary field This field is in TTime format
SyncClass Synchronisation field Possible values of this field are Public or Private, all other entries takes the value Private. 1000
LOCPrivacy Locality Privacy field 256

6.4. Contacts 149

6.5 Landmarks

The Landmark service enable run-time client applications to manage landmarks in a consistent manner, within a
terminal. Landmarks can be stored in one or more databases within a terminal. You can manage landmarks and
landmark categories within a database using this service.

A category is characteristic of a landmark. Categories denote a class of geographical or architectural interest,
attraction or activity-related types of objects. Categorization is very useful when searching for landmarks by
type. The classification of Landmark categories is as follows:

• Local category: You can create the local category. It does not have global IDs, which distinguish it from
the global categories.

• Global category: Each global landmark category has a unique global identifier associated with it.

Landmarks and Categories are stored in landmark databases. The classifications of Landmark databases are as
follows:

• Local database: Resides in the phone or in a device mapped to the file system of the phone.

• Remote database: Stored in third party servers, accessed using a specific protocol. Currently remote
database and associated operations are not supported.

The Landmarks service provides the user facilities to access, create, add, delete, import, export, and organize
landmarks.

The following sample code is used to load the provider:

import scriptext
landmark_handle = scriptext.load(’Service.Landmarks’, ’IDataSource’)

The following table summarizes the Landmarks Interface:

Service provider Service.Landmarks
Supported inter-
faces

IDataSource

The following table lists the services available in Landmarks:

Services Description
New 6.5.1 Get a template of landmark or category.
Getlist 6.5.2 Get a list of landmark databases, landmarks or landmark categories based on given criteria.
Add 6.5.3 Add or update a landmark and landmark category.
Delete 6.5.4 Delete a landmark and landmark category.
Import 6.5.5 Imports landmark(s).
Export 6.5.6 Launches application based on the Document.
Organise 6.5.7 Associate or disassociate a landmark category with a set of landmarks.

6.5.1 New

New method is used to create an empty landmark or landmark category item. You can use the new item as a
template. It is available only in synchronous mode.

The following is an example for using New:

150 Chapter 6. scriptext - Platform Service API Usage from Python runtime

new_output = landmark_handle.call(’New’, {’Type’: u’Landmark’})

The following table summarizes the specification of New:

Interface IDataSource
Operation Creates an empty landmark or category item.
Response Model Synchronous
Pre-condition IDataSource interface is loaded.
Post-condition Nil

Input Parameters

Input parameter specifies the content type to create.

Name Type Range Description
Type unicode string Landmark

Category
Specifies the content type to create.

Table 6.86: Input parameters for New

Output Parameters

Output parameters contain ErrorCode, and ErrorMessage if the operation fails.

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.
ReturnValue map

Landmark or cate-
gory, as discussed in
the Key Values 6.5.8
section.

NA For content template description, see Landmark and Cat-
egory in the Key Values 6.5.8 section.

Table 6.87: Output parameters for New

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to create an empty landmark/category item:

6.5. Landmarks 151

Error code value Description
1007 No memory

Table 6.88: Error codes

Error messages Description
Landmarks:New:Type is
missing

Indicates Type is missing or data type of Type is mis-
matched.

Landmarks:New:Type is
invalid

Indicates that Type is not a value in the given range.

Table 6.89: Error messages

import scriptext

landmark_handle = scriptext.load(’Service.Landmarks’, ’IDataSource’)
try:

new_output = landmark_handle.call(’New’, {’Type’: u’Landmark’})
error = new_output[’ErrorCode’]
if error != 0:

print "Error in creating the landmark item"
else:

print "The Landmark item is created"

except scriptext.ScriptextError, err:
print "Error performing the operation : ", err

6.5.2 GetList

GetList is used to retrieve information about landmarks, landmark categories, or landmark databases.
Landmarks and landmark categories are retrieved from the specified landmark database or, if no database is
specified, from the default one.

The following are the examples for using GetList:

Synchronous

landmarkinfo = landmark_handle.call(’GetList’, {’Type’: u’Landmark’,
’Filter’:{’uDatabaseURI’: u’dataBaseUri’,

’LandmarkName’: u’AnyLandMarkNm’},
’Sort’ :{’Key’: u’LandmarkName’,

’Order’: u’Descending’}})

Asynchronous

event_id = landmark_handle.call(’GetList’, {’Type’: u’Landmark’,
’Filter’:{’uDatabaseURI’:u’dataBaseUri’,

’LandmarkName’:u’AnyLandMarkNm’},
’Sort’:{’Key’:u’LandmarkName’,

’Order’:u’Descending’}},
callback=get_list)

152 Chapter 6. scriptext - Platform Service API Usage from Python runtime

where, get_list is a user defined callback function.

The following table summarizes the specification of GetList:

Interface IDataSource
Description Retrieves an iterable on items qualified by search criteria.
Response Model Synchronous and asynchronous, depending on the criteria and use case.
Pre-condition IDataSource interface is loaded.
Post-condition The iterable points to the first element in the

list from an active or specified database.
The default or active database opened for reading landmarks and
categories. Creates the database, if it does not exist and is set as active.

Input Parameters

Input parameter specifies what landmark information is returned and how the returned information is sorted.

Output Parameters

Output parameters contain the requested information. They also contain ErrorCode, and ErrorMessage if
the operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to query a list of Landmarks with search criteria, in asynchronous
mode:

6.5. Landmarks 153

Name Type Range Description
Type unicode string Landmark

Category
Database

Performs operation based on the specified content
types.

[Filter] map
Landmark search
criteria: For more
information, see Key
Values 6.5.8 section
in Landmarks.
Category search
criteria: For more
information, see Key
Values 6.5.8 section
in Landmarks.
Database
search criteria
[DbProtocol]:
unicode string

Landmark search criteria:
It is the map containing the
landmark search fields for
setting the search criteria.

Text Criterion:
The following fields
can be specified:
LandmarkName
LandmarkDesc

Nearest Criterion:
The following fields
need to be specified:
LandmarkPosition
CoverageRadiusOption
MaximumDistance

Category Criterion:
The following field
needs to be specified:
CategoryName

Area Criterion:
The following field
needs to be specified:
BoundedArea

Category search criteria:
It is the map containing the
landmark category search fields
for setting the search criteria.

Database search criteria:
DbProtocol: Search criteria are
the protocol string.

Optional Parameter. If filter is not
specified, an iterator to all entries
of the specified type is returned.

Landmark search criteria:
Specify one or more search crite-
ria to retrieve a list of landmarks.

CoverageRadiusOption and
MaximumDistance are required only
when landmark Position is specified.

Category Search Criteria:
Specify text with wild cards to iter-
ate through the list of categories.

Database Search Criteria:
If you do not specify protocol then all avail-
able databases will be listed.

[Sort] map
[Key]: uni-
code string
Order: uni-
code string

Key:
Possible Values for the types:
Landmark:
LandmarkName
Category:
CategoryName
Database:
DatabaseURI
Order:
Ascending
Descending

Optional Parameter.

Default Value for Order
Type Landmarks: Ascending
Type Category: None
Type Database: Ascending

Sorts qualified list based on sort key and sort or-
der.

Table 6.90: Input parameters for Getlist

154 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range (Type:
string)

Description

ReturnValue Iterable
To maps of requested
type

map:
Landmark
Category
Database

Iterator to the retrieved list of items of the re-
quested type. For map of type, see Landmark,
Category, and Database in the Key Values
6.5.8 section.

ErrorCode int NA Service specific error code on failure of the oper-
ation.

ErrorMessage string NA Error description in Engineering English.

Table 6.91: Output parameters for GetList

Error code value Description
-304 General Error
0 Success
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1012 Item not found

Table 6.92: Error codes

Error messages Description
Landmarks:GetList:Type is missing Indicates Type is missing or data type of Type is mis-

matched.
Landmarks:GetList:Type is invalid Indicates that Type is not a value in the given range.
Landmarks:GetList:Data is missing Indicates Data is missing or data type of Data is mis-

matched.
Landmarks:GetList:LandmarkPosition
is missing

Indicates LandmarkPostion is missing or data type
of LandmarkPostion is mismatched.

Landmarks:GetList:Latitude is
missing

Indicates Latitude is missing or data type of Latitude is
mismatched.

Landmarks:GetList:Longitude is
missing

Indicates Longitude is missing or data type of Longitude
is mismatched.

Landmarks:GetList:BoundedArea is
missing

Indicates BoundedArea is missing or data type of
BoundedArea is mismatched.

Landmarks:GetList:NorthLatitude
is missing

Indicates NorthLatitude is missing or data type of
NorthLatitude is mismatched.

Landmarks:GetList:SouthLatitude
is missing

Indicates SouthLatitude is missing or data type of
SouthLatitude is mismatched.

Landmarks:GetList:EastLongitude
is missing

Indicates EastLongitude is missing or data type of
EastLongitude is mismatched.

Landmarks:GetList:WestLongitude
is missing

Indicates WestLongitude is missing or data type of
WestLongitude is mismatched.

Landmarks:GetList:MaximumMatches
is invalid

Indicates MaximumMatches value provided is invalid
that is, equal or less than 0.

Landmarks:GetList:Sort is missing Indicates Sort is missing or data type of Sort is mis-
matched.

Table 6.93: Error messages

6.5. Landmarks 155

import scriptext
import e32

Using e32.Ao_lock() to make main function wait till callback is hit
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def get_list(trans_id, event_id, input_params):

if event_id != scriptext.EventCompleted:
Check the event status

print "Error in retrieving required info"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message:" + input_params["ReturnValue"]["ErrorMessage"]
else:

print "The landmarks are"
for i in input_params["ReturnValue"]:

print "Name of Landmark"
print i["LandmarkName"]
print "Description of Landmark"
print i[’LandmarkDesc’]

lock.signal()

Async Query a list of Landmarks with search criteria
landmark_handle = scriptext.load(’Service.Landmarks’, ’IDataSource’)
event_id = landmark_handle.call(’GetList’, {’Type’: u’Landmark’,

’Filter’: {’uDatabaseURI’:u’dataBaseUri’,
’LandmarkName’:u’AnyLandMarkNm’},

’Sort’: {’Key’:u’LandmarkName’,
’Order’:u’Descending’}},

callback=get_list)

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.5.3 Add

Add is used to add or modify an object to the active or specified landmark database. It accepts a set of input
parameters that define the Type and its details to add. It is available only in synchronous mode.

The following is an example for using Add:

add_output = landmark_handle.call(’Add’, {’Type’: u’Landmark’,
’Data’: {’LandmarkName’: u’land1’}})

The following table summarizes the specification of Add:

Input Parameters

Input parameter specifies what landmark information is returned and how the returned information is sorted.

Output Parameters

Output parameters contain the requested information. They also contain ErrorCode, and ErrorMessage if
the operation fails.

156 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Interface IDataSource
Description Adds or Modifies an object to the active or specified landmark database.
Response Model Synchronous
Pre-condition IDataSource interface is loaded. Update is performed only on an

existing landmark or category. You must provide ID of the landmark or
category to update. The ID is retrieved by calling GetList.

Post-condition The default or active database is opened for read-
ing landmarks and categories. A default database is
created, if it does not exist and is set as active.

Landmark/category is added or edited in the specified database or the
active databases, in case database is not specified. A new database is
created within a terminal, in case of addition of a new database.

Name Type Range Description
Type unicode string Landmark

Category
Performs operation based on the specified
content types.

Data Landmark
map
(LandmarkMap)
[DatabaseURI]:
unicode string

Category
map
(CategoryMap)
[DatabaseURI]:
unicode string

Landmark
DatabaseURI:
The Uri of the
database to which
the landmark must
be added or edited. If
this is not specified
then, landmark or
category is added to
default database.

LandmarkMap:
The map contain-
ing the landmark
fields which are
added or edited.

Category
DatabaseURI:
The Uri of the
database to which
the category must
be added or edited.

CategoryMap: The
map containing the
category fields which
are added or edited.

Data Fields contain information
about the object to be added.

Do not set the ID field to add a new
landmark/category. For adding land-
mark/category you can make use of New.

Do not modify the ID field when editing
an existing landmark/category which is re-
trieved from GetList.

Table 6.94: Input parameters for Add

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.
ReturnValue string NA ID of the landmark/category that was added or modified.

Table 6.95: Output parameters for Add

6.5. Landmarks 157

Errors

The following table lists the error codes and their values:

Error code value Description
-304 General Error
0 Success
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1006 Service not ready
1011 Access denied
1012 Item not found

Table 6.96: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Landmarks:Add:Type or Data is
missing

Indicates Type is missing or data type of Type is mis-
matched.

Landmarks:Add:Type is invalid Indicates that Type is not a value in the given range.
Landmarks:Add:Data is missing Indicates Data is missing or data type of Data is mis-

matched.
Landmarks:Add:LandmarkPosition is
missing

Indicates LandmarkPostion is missing or data type
of LandmarkPostion is mismatched.

Landmarks:Add:CategoryInfo is
missing

Indicates CategoryInfo is missing or data type of
CategoryInfo is mismatched.

Landmarks:Add:IconIndex is
missing

Indicates IconIndex is missing or data type of
IconIndex is mismatched.

Landmarks:Add:LandmarkFields is
missing

Indicates LandmarkFields is missing or data type of
LandmarkFields is mismatched.

Landmarks:Add:CategoryName is
missing

Indicates CategoryName is missing or data type of
CategoryName is mismatched.

Landmarks:Add:DatabaseURI is
missing

Indicates DatabaseURI is missing or data type of
DatabaseURI is mismatched.

Table 6.97: Error messages

Example

The following sample code illustrates how to add or modify an object to the active / specified landmark database:

158 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext

landmark_handle = scriptext.load(’Service.Landmarks’, ’IDataSource’)
try:

add_output = landmark_handle.call(’Add’, {’Type’: u’Landmark’,
’Data’: {’LandmarkName’: u’land1’}})

error = add_output[’ErrorCode’]

if error != 0:
print "Error in adding the landmark"

else:
print "Landmark added"

except scriptext.ScriptextError, err:
print "Error performing the operation : ", err

6.5.4 Delete

Delete is used to delete the user specified object or data from the active or specified landmark database. It
accepts a set of input parameters that define the Type and data for performing the delete operation. It is available
only in synchronous mode.

The following is an example for using Delete:

getlist_output = landmark_handle.call(’GetList’, {’Type’: u’Landmark’,
’Filter’: {’LandmarkName’: u’land1’}})

The following table summarizes the specification of Delete:

Interface IDataSource
Description Deletes an object from the active or specified landmark database.
Response Model Synchronous
Pre-condition IDataSource interface is loaded.
Post-condition The default or active database opened for reading land-

marks and categories. A default database is cre-
ated, if it does not exist and is set as active.

A Landmark/category is deleted from an active or specified database.

Deleting a database, deletes it from terminal.

Input Parameters

Input parameter specifies the Type Landmark/category to delete and details of the particular Type.

Output Parameters

Output parameters contain ErrorCode, and ErrorMessage if the operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

6.5. Landmarks 159

Name Type Range Description
Type unicode string Landmark

Category
Performs operation based on the specified
content types.

Data Landmark
map
[DatabaseURI]:
unicode string
ID: unicode string

Category
map
[DatabaseURI]:
unicode string
ID: unicode string

NA the Type Landmark/Category to delete
and details of the particular Type.

ID is a mandatory field for deleting a land-
mark and category object.

Table 6.98: Input parameters for Delete

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.99: Output parameters for Delete

Error code value Description
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1006 Service not ready
1011 Access denied

Table 6.100: Error codes

160 Chapter 6. scriptext - Platform Service API Usage from Python runtime

The following table lists the error messages and their description:

Error messages Description
Landmarks:Delete:Type or
Data is missing

Indicates Type is missing or data type of Type is mis-
matched.

Landmarks:Delete:Type is
invalid

Indicates that Type is not a value in the given range.

Landmarks:Delete:Data is
missing

Indicates Data is missing or data type of Data is mis-
matched.

Landmarks:Delete:Id is
missing

Indicates ID is missing or data type of ID is mismatched.

Landmarks:Delete:DatabaseURI
is missing

Indicates DatabaseURI is missing or data type of
DatabaseURI is mismatched.

Table 6.101: Error messages

Example

The following sample code illustrates how to delete an object from the active / specified landmark database:

import scriptext

landmark_handle = scriptext.load(’Service.Landmarks’, ’IDataSource’)
try:

getlist_output = landmark_handle.call(’GetList’, {’Type’: u’Landmark’,
’Filter’: {’LandmarkName’: u’land1’}})

getlist_error = getlist_output[’ErrorCode’]
if getlist_error != 0:

print "GetList error"
else:

retval = getlist_output[’ReturnValue’]
id = retval[’id’]
delete_output = landmark_handle.call(’Delete’,{’Type’: u’Landmark’,

’Data’: {’id’: unicode(id)}})
delete_error = delete_output[’ErrorCode’]
if delete_error != 0:

print "Error in deleting landmark"
else:

print "Landmark deleted"
except scriptext.ScriptextError, err:

print "Error performing the operation : ", err

6.5.5 Import

Import is used to import a set of Landmarks. It accepts a set of input parameters that define the Type and data
for performing the operation. It is available only in synchronous mode.

The following is an example for using Import:

getlist_output = landmark_handle.call(’GetList’, {’Type’: u’Landmark’,
’Filter’: {’LandmarkName’: u’land1’}})

The following table summarizes the specification of Import:

Input Parameters

6.5. Landmarks 161

Interface IDataSource
Description Imports a set of Landmarks.
Response Model Synchronous
Pre-condition IDataSource interface is loaded.
Post-condition The default or active database is opened for read-

ing landmarks and categories. A default database is
created, if it does not exist and is set as active.

The iterator points to the first item in the list of imported objects.
Updates the Database with the list of imported landmarks.

Input parameter specifies the Type and Data of the particular landmark to import.

Name Type Range Description
Type unicode string Landmark Performs operation based on the specified

content types.
Data map

[DatabaseURI]:
unicode string
SourceFile:
unicode string
MimeType: uni-
code string

NA DatabaseURI: Import landmarks to
the database. If this is not speci-
fied landmarks / categories is im-
ported to the default database.

SourceFile: Import land-
marks from this file.

MimeType: Encoding algorithm.

You must specify the Mime type of the
landmark content that must be parsed.
Mime enables the inclusion of media
other than plain text and the inclusion of
several entities in one single message.

Supported Mime types:
application/vnd.nokia.landmarkcollection+xml.

Table 6.102: Input parameters for Import

Output Parameters

Output parameters contain ReturnValue. It also ErrorCode, and ErrorMessage if the operation fails.
ReturnValue is an iterator to an array of Landmarks.

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to import a set of landmarks:

162 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range (Type:
string)

Description

ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.
ReturnValue Iterable

To maps of
imported
Landmark.

map
Landmark. For
more information,
refer Key Values
6.5.8 section.

Iterator to the list of imported landmarks. For map, see
Landmark in the Key Values 6.5.8 section.

Table 6.103: Output parameters for Import

Error code value Description
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1010 Entry exists
1011 Access denied
1012 Item not found
1013 Unknown format
1017 Path not found

Table 6.104: Error codes

Error messages Description
Landmarks:Import:Type or
Data is missing

Indicates Type is missing or data type of Type is mis-
matched.

Landmarks:Import:Type is
invalid

Indicates that Type is not a value in the given range.

Landmarks:Import:Data is
missing

Indicates Data is missing or data type of Data is mis-
matched.

Landmarks:Import:MimeType is
missing

Indicates MimeType is missing or data type of
MimeType is mismatched.

Landmarks:Import:SourceFile
is missing

Indicates SourceFile is missing or data type of
SourceFile is mismatched.

Table 6.105: Error messages

6.5. Landmarks 163

import scriptext

landmark_handle = scriptext.load(’Service.Landmarks’, ’IDataSource’)
try:

import_output = landmark_handle.call(’Import’, {’Type’: u’Landmark’,
’Data’: {’SourceFile’: u’c:\data\land_import.txt’,
’MimeType’:
u’application/vnd.nokia.landmarkcollection+xml’}})

error = import_output[’ErrorCode’]
if error != 0:

print "Error in importing landmark"
else:

print "Landmark imported"

except scriptext.ScriptextError, err:
print "Error performing the operation : ", err

6.5.6 Export

Export is used to exports a specified set of Landmarks. It is available only in synchronous mode.

The following is an example for using Export:

getlist_output = landmark_handle.call(’GetList’, {’Type’: u’Landmark’,
’Filter’: {’LandmarkName’: u’land1’}})

The following table summarizes the specification of Export:

Interface IDataSource
Description Imports a set of Landmarks.
Response Model Synchronous
Pre-condition IDataSource interface is loaded.
Post-condition The default or active database is opened for read-

ing landmarks and categories. A default database is
created, if it does not exist and is set as active.

Landmarks is exported to the specified file.

Input Parameters

Input parameter specifies the Type and Data for performing the operation.

Output Parameters

Output parameters contain ErrorCode, and ErrorMessage if the operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

164 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range Description
Type unicode string Landmark Performs operation based on the specified content

types.
Data map

[DatabaseURI]:
unicode string
DestinationFile:
unicode string
IdList: List
(Lmid1, Lmid2)
MimeType: unicode
string

NA DatabaseURI: Export landmarks
from this database. If this is not
specified landmarks/categories is ex-
ported from default database.

DestinationFile: Export landmarks to this
file. Complete file path must be specified.

IdList: List of landmark Ids.

MimeType: Encoding algorithm.

You must specify the Mime type of the land-
mark content. Mime enables the inclusion
of media other than plain text and the inclu-
sion of several entities in one single message.

Supported Mime types:
application/vnd.nokia.landmarkcollection+xml.

Table 6.106: Input parameters for Export

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.107: Output parameters for Export

Error code value Description
-301 No Service
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1010 Entry exists
1017 Path not found

Table 6.108: Error codes

6.5. Landmarks 165

Error messages Description
Landmarks:Export:Type or Data is
missing

Indicates Type is missing or data type of Type is mis-
matched.

Landmarks:Export:Type is invalid Indicates that Type is not a value in the given range.
Landmarks:Export:Data is missing Indicates Data is missing or data type of Data is mis-

matched.
Landmarks:Export:MimeType is
missing

Indicates MimeType is missing or data type of
MimeType is mismatched.

Landmarks:Export:DestinationFile
is missing

Indicates DestinationFile is missing or data type
of DestinationFile is mismatched.

Landmarks:Export:IdList is
missing

Indicates IdList is missing or data type of IdList is
mismatched.

Landmarks:Export:IdList is empty Indicates IdList is empty.

Table 6.109: Error messages

Example

The following sample code illustrates how to export a set of landmarks:

import scriptext

landmark_handle = scriptext.load(’Service.Landmarks’, ’IDataSource’)
try:

getlist_output = landmark_handle.call(’GetList’, {’Type’: u’Landmark’,
’Filter’: {’LandmarkName’: u’land1’}})

getlist_error = getlist_output[’ErrorCode’]
if getlist_error != 0:

print "GetList error"
else:

retval = getlist_output[’ReturnValue’]
id_val = retval[’id’]
export_output = landmark_handle.call(’Export’, {’Type’: u’Landmark’,

’Data’: {’DestinationFile’:
u’c:\data\export_land.txt’,

’idList’: [id_val],
’MimeType’:
’application/vnd.nokia.landmarkcollection+xml’}})

export_error = export_output[’ErrorCode’]
if export_error != 0:

print "Export unsuccessful"
else:

print "Landmark ecported"

except scriptext.ScriptextError, err:
print "Error performing the operation : ", err

6.5.7 Organise

Organise is used to associate or disassociate a list of landmarks in a database to a category. It accepts a set of
parameters that defines the Type, data, and operation type for performing the operation. It is available only in
synchronous mode.

The following is an example for using Organise:

166 Chapter 6. scriptext - Platform Service API Usage from Python runtime

org_output = landmark_handle.call(’Organise’, {’Type’: u’Landmark’,
’Data’: {’id’: unicode(cat_id),
’idList’: [id_val1,id_val2]},
’Operation Type’: ’Associate’})

The following table summarizes the specification of Organise:

Interface IDataSource
Description Associates or disassociates a list of landmarks in a database to a cate-

gory.
Response Model Synchronous
Pre-condition IDataSource interface is loaded.
Post-condition The default or active database is opened for read-

ing landmarks and categories. A default database is
created, if it does not exist and is set as active.

Landmarks is exported to the specified file.

Input Parameters

Input parameter specifies the type, data, and type of operation for performing the operation.

Name Type Range Description
Type unicode string Landmark Performs operation based on the specified

content types.
Data map

[DatabaseURI]:
unicode string
Id: unicode string
IdList: List (Id1,
Id2)

NA DatabaseURI: Organise land-
marks in this database.

Id: Associate or disassociate land-
marks to the category Id.

IdList: List of landmarks need to be orga-
nized.

OperationType unicode string OperationType:
Associate
Disassociate

NA

Table 6.110: Input parameters for Organise

Output Parameters

Output parameters contain ErrorCode, and ErrorMessage if the operation fails.

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.111: Output parameters for Organise

Errors

The following table lists the error codes and their values:

6.5. Landmarks 167

Error code value Description
1002 Bad argument type
1003 Missing argument
1011 Access denied
1012 Item not found

Table 6.112: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Landmarks:Organise:Type or Data
or OperationType is missing

Indicates Type is missing or data type of Content Type is
mismatched.

Landmarks:Organise:Type is
invalid

Indicates that Type is not a value in the given range.

Landmarks:Organise:Data is
missing

Indicates Data is missing or data type of Data is mis-
matched.

Landmarks:Organise:Id is missing Indicates category Id is missing or data type of category
Id is mismatched.

Landmarks:Organise:IdList is
missing

Indicates IdList is missing or data type of IdList is
mismatched.

Landmarks:Organise:IdList is
empty

Indicates IdList is empty.

Landmarks:Organise:OperationType
is missing

Indicates OperationType is missing or data type of
OperationType is mismatched.

Landmarks:Organise:OperationType
is invalid

Indicates OperationType is not a value in the given
range.

Table 6.113: Error messages

Example

The following sample code illustrates how to associate or disassociate list of landmarks in a database to a
category:

168 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext

landmark_handle = scriptext.load(’Service.Landmarks’, ’IDataSource’)
try:

getlist_cat_output = landmark_handle.call(’GetList’, {’Type’: u’Category’})
retval_cat = getlist_cat_output[’ReturnValue’]
cat_id = retval_cat[’id’]

getlist_land1_output = landmark_handle.call(’GetList’, {’Type’: u’Landmark’,
’Filter’: {’LandmarkName’: u’land1’}})

retval1 = getlist_land1_output[’ReturnValue’]
id_val1 = retval[’id’]

getlist_land2_output = landmark_handle.call(’GetList’, {’Type’: u’Landmark’,
’Filter’: {’LandmarkName’: u’land2’}})

retval2 = getlist_land2_output[’ReturnValue’]
id_val2 = retval[’id’]

org_output = landmark_handle.call(’Organise’, {’Type’: u’Landmark’,
’Data’: {’id’: unicode(cat_id),

’idList’: [id_val1,id_val2]},
’Operation Type’: ’Associate’})

error = org_output[’ErrorCode’]
if error != 0:

print "Error in organising contacts"
else:

print "Conatcs organised"

except scriptext.ScriptextError, err:
print "Error performing the operation : ", err

6.5.8 Key Values

Landmark

Category

Database

Position Information of a Landmark

LandmarkPositionFields

Landmark Search Criteria

BoundedArea

Bounded area is the area enclosed at the intersection of the latitudes and longitudes as mentioned in the following
table:

Category Search Criteria

6.5. Landmarks 169

Key Type Description
[LandmarkName] string Specifies a name for the landmark. Landmark name is not unique in a

database. Maximum string Length is 255.
[id] string A unique identifier created in the database

on addition of a new landmark.

This field must not be specified when a new landmark is added to the
database.

[CategoryInfo] List of strings List of Category IDs to which a landmark belongs.
[LandmarkDesc] string Description about the landmark. Maximum string Length is 4095.
[LandmarkPosition] map map describes latitude, longitude, altitude of a landmark. For more

information, see Position Information of a Landmark.
[CoverageRadius] Double Radius from a position defined in landmark.
[IconFile] string Specifies Icon associated with landmark. Maximum string Length is

255.
[IconIndex] int Index of icon within the Icon file.
[IconMaskIndex] int Index of the icon mask within the Icon file.
[LandmarkFields] map This is a name-value pair. For more information, see LandmarkPosi-

tionFields.

Table 6.114: Key values- Landmark

Key Type Description
[CategoryName] string Specifies a name for the category. Category name is unique in a

database. Maximum string Length is 124.
[id] string A unique identifier created in the database on

addition of a new category to a database.

This field must not be specified when a new landmark is added to the
database.

[GlobalId] string Specifies global category ID. This field is a non-modifiable field. It is
ignored if passed as input.

[IconFile] string Specifies Icon associated with landmark. Maximum string Length is
255.

[IconIndex] int Index of icon within the Icon file.
[IconMaskIndex] int Index of the icon mask within the Icon file.

Table 6.115: Key values- Category

170 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Key Type Description
[DatabaseName] string Specifies a name for a database. Database name need not be unique.
DatabaseURI string Database file name defined in specific format:

¡protocol¿://¡filename¿.

For example:
file://c:landmark.ldb [local database].
protocol://location [Remote database].

[DbDrive] string Specifies drive in which database is stored. For example, C.
[DbProtocol] string Specifies protocol by which database can be accessed.
[DbMedia] int 0: MediaNotPresent

1: MediaUnknown
2: MediaFloppyDisk
3: MediaHardDisk
4: MediaCdRom
5: MediaRam
6: MediaFlash
7: MediaRom
8: MediaRemote
9: MediaNANDFlash
10: MediaRotatingMedia

[DbSize] int Specifies the size of the database in bytes.
[DbActive] bool Indicates if this database is opened by default (that is, device default database).

True: Default database.
False: Not a default database.

Table 6.116: Key values- Database

Key Type Description
Latitude Double Specifies latitude of a location in WGS-84 format. This needs to be specified

in decimal degrees. Normal range of values [-90,+90]. Out of range values
will be normalized to range as per standards. Negative degrees indicate west
latitude and positive value indicated east latitude.

Longitude Double Specifies longitude of a location in WGS-84 format. This needs to be specified
in decimal degrees. Normal range of values [-180 ,+180]. Out of range values
will be normalized to range as per standards. Negative value indicates south
longitude and positive value indicates north longitude.

[Altitude] Double Specifies altitude of a location in WGS-84 format, in meters.
[HAccuracy] Double Error estimate of horizontal accuracy to Latitude, Longitude, and Altitude in

meters.
[VAccuracy] Double Error estimate of vertical accuracy to Latitude, Longitude, and Altitude in me-

ters.

Table 6.117: Key values- Position Information of a Landmark

Key Type Description
[Street] string Address of the landmark. Maximum string Length is 255.
[BuildingName] string Address of the landmark. Maximum string Length is 255.
[District] string Address of the landmark. Maximum string Length is 255.
[City] string Address of the landmark. Maximum string Length is 255.
[AreaCode] string Address of the landmark. Maximum string Length is 255.
[Telephone] string Contact number. Maximum string Length is 255.
[Country] string Address of the landmark. Maximum string Length is 255.

Table 6.118: Key values- LandmarkPositionFields

6.5. Landmarks 171

Key Type Description
[DatabaseURI] string Search is performed on the specified database. If database is not spec-

ified then, search is performed on default database. Maximum string
Length is 255.

[LandmarkName] string Text is case insensitive, wild cards supported- ’?’ for single character,
’*’ for zero or more characters. Maximum string Length is 255.

[LandmarkPosition] map Map describes latitude, longitude, altitude of a landmark. For
more information, see Position Information of a Landmark.

Only Latitude and Longitude fields are considered for search.
[CoverageRadiusOption] bool True: The coverage radius of landmarks is considered in the distance

calculation. For example, if the circular search area and centre coor-
dinates, which are mentioned in LandmarkPosition and radius men-
tioned in MaximumDistance intersects the landmark circular area, cen-
tre coordinates specified by the coordinates of the landmark and radius
specified by CoverageRadius then, such landmark will be returned.

False: The CoverageRadius of the landmark
is not considered in the distance calculation.
The default value is False.

[MaximumDistance] Double It is the distance from centre coordinate if CoverageRadius option
is False else it is the effective distance calculated as landmark centre
minus the coverage radius.

[CategoryName] string Search results only for landmarks that belong to
this category. Maximum string Length is 124.

If specified False then, only unlisted landmarks are listed.
[LandmarkDesc] string Text is case insensitive, wild cards supported- ’?’ for single character,

’*’ for zero or more characters. Maximum string Length is 4095.
[BoundedArea] map Area specified within NSEW latitudes and longitudes. For more infor-

mation, see Bounded area.
[MaximumMatches] int The maximum number of items retrieved when provided with criteria

information. If not mentioned then all landmarks are returned.
[PreviousMatchesOnly] bool You can request to search within previous search results only.

True: Searches in previous search results.
False: A new search will be carried out on database.

If you do not specify this option then, False will be taken as default.

Table 6.119: Key values- Landmark Search Criteria

Key Type Description
NorthLatitude Double The northern-most latitude of the bounded area in WGS-84 format.
SouthLatitude Double The southern-most latitude of the bounded area in WGS-84 format.
EastLongitude Double The eastern longitude of the bounded area in WGS-84 format.
WestLongitude Double The western longitude of the bounded area in WGS-84 format.

Table 6.120: Key values- BoundedArea

172 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Key Type Description
[DatabaseURI] string Search is performed on a specified database. If the database is not specified

then, search is performed on default database. Maximum string Length is 255.
[CategoryName] string Text is case insensitive, wild cards supported- ’?’ for single character, ’*’ for

zero or more characters. Maximum string Length is 124.
[MaximumMatches] int The maximum number of items retrieved when provided with criteria informa-

tion. If not mentioned then all landmarks are returned.
[PreviousMatchesOnly] bool You can request to search within previous search results only.

True: Searches in previous search results.
False: A new search will be carried out on a database.

If you do not specify this option then False will be taken as default.

Table 6.121: Key values- Category Search Criteria

6.6 Location

The Location Service enables Python applications to retrieve information on the physical location of an S60
device. It also enables to perform calculations based on location information.

For the location services to function in S60 device, the device must be location aware. It must include some
location information provider, that is, a positioning system in the form of GPS, AGPS, or Bluetooth.

The following sample code is used to load the provider:

import scriptext
location_handle = scriptext.load(’Service.Location’, ’ILocation’)

The following table summarizes the Location Interface:

Service provider Service.Location
Supported interfaces ILocation

The following table lists the services available in Application Manager:

Services Description
GetList 6.6.1 Retrieves the current location of the user.
Trace 6.6.2 Informs the consumer of any change in current location.
CancelNotification
6.6.3

Cancels the registered listeners with the service provider.

MathOperations 6.6.4 Performs specific calculations on user provided data.

6.6.1 GetList

GetList is used to retrieve the current location of the device.

The following are the examples for using GetList:

Synchronous

6.6. Location 173

GetList_Output = location_handle.call(’GetList’, {’LocationInformationClass’: u’BasicLocationInformation’, ’Updateoptions’: {’UpdateInterval’:u’1’, ’UpdateTimeOut’: u’15’, ’UpdateMaxAge’ :u’0’, ’PartialUpdates’: u’False’}})

Asynchronous

event_id = location_handle.call(’GetList’, {’LocationInformationClass’: u’BasicLocationInformation’, ’Updateoptions’: {’UpdateInterval’: u’1’, ’UpdateTimeOut’: u’15’, ’UpdateMaxAge’: u’0’, ’PartialUpdates’: u’False’}}, callback=get_list)

where, get_list is a user defined function.

The following table summarizes the specification of GetList:

Interface ILocation
Description Retrieves the current location of the device.
Response Model Synchronous and asynchronous
Pre-condition Device must be Location aware (that is, it must have some loca-

tion information provider in form of GPS, AGPS, or Bluetooth).
ILocation interface loaded.

Post-condition Nil

Input Parameters

Input parameter specifies the category of location information and the update option used for retrieving location
information.

Output Parameters

Output parameters contain the requested information. They also contain ErrorCode, and ErrorMessage if
the operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to retrieve a list with location information, in asynchronous mode:

174 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range Description
[Location
Information
Class]

unicode string Basic
Location
Information

Generic
Location
Info

This specifies category of location
information. You will receive de-
tailed location estimations on speci-
fying Generic Location Info.

Default value for this argument is
BasicLocationInformation.

Refer to Updateoptions descrip-
tion to know more about what are
the output that are guaranteed to be
in the location estimates for each of
the LocationInformationClass
provided.

[Updateoptions] map
Name: Type
[UpdateInterval]
(Microsec-
onds): int32
[UpdateTimeOut]
(Microsec-
onds): int32
[UpdateMaxAge]
(Microsec-
onds): int32
[PartialUpdates]
(Microseconds):
bool

NA This specifies update option used
while retrieving location estimation.

Default values are used if no argument is
specified as part of input argument list.

UpdateInterval specifies the
time interval between two con-
secutive location estimates.

If location server is not able to give
location estimates within specified
UpdateTimedOut, you will re-
ceive SErrTimedOut error.

UpdateMaxAge specifies the expiry
time for the position information cache. It
means that when a position request is made
the position information can be returned
from the cache, (Managed by location
server) as long as the cache is not older
that the specified maximum age.
The default value is zero that
is, the position information will
never be returned from cache.

Setting PartialUpdates to FALSE
ensures that you will get at least
BasicLocationInformation
(Longitude, Latitude, and Altitude.)

By default, following values (in sec-
onds) are used for these input pa-
rameters. UpdateInterval = 1
UpdateTimeOut = 15
UpdateMaxAge = 0
PartialUpdates = FALSE

note:

In case the following order is
not maintained when you supply
value for updateoption, it re-
turns the error SErrArgument.
UpdateTimeOut¿UpdateInterval¿MaxAge

Table 6.122: Input parameters for GetList

6.6. Location 175

Name Type Range (Type:
string)

Description

ErrorCode int NA Service specific error code on failure of the
operation.

ErrorMessage string NA Error description in Engineering English.
ReturnValue For more information, refer

table map: GetList 6.124
NA It contains location estima-

tions. In case you specify
BasicLocationInformation
in the input list only longitude, lat-
itude and altitude will return.

note:
If PartialUpdates is set
to FALSE you must get lon-
gitude, altitude and latitude.
The WGS-84 datum is used to
refer co-ordinates. Also repre-
sentation is in decimal degree.

In case generic information is requested,
there is no guarantee that all infor-
mation mentioned here will be ob-
tained as it depends on the underlying
GPS technology and other factor like
number of satellites, which are avail-
able when location fix is obtained.

note:
Not all GPS technology are capable
of retrieving all information listed here.
For example, if you select network based
positioning technology it does not have
capability to retrieve satellites information.
In situation where a particular field can not
be retrieved from the underlying GPS tech-
nology, it will not be present in the output
list mentioned here.

Table 6.123: Output parameters for GetList

176 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Data Type Description
Longitude Double This is the longitudinal data. Degree value is in the range [+180, -180].
Latitude Double This is the latitudinal data. Degree value is in the range [+90, -90].
Altitude Double Altitude data, height in meters.
SatelliteNumView Double Number of field satellite currently in view.
SatelliteNumViewUsed Double Number of satellites used.
HorizontalSpeed Double Horizontal speed, value in meters per second.
HorizontalSpeedError Double Horizontal speed error, value in meters per second.
TrueCourse Double This is the information about the current direction in degrees to true north.
TrueCourseError Double This is the true course error in degrees.
MagneticHeading Double This is the current direction in degrees to magnetic north.
MagneticHeadingError Double True magnetic course error in Degrees.
Heading Double This is the current instantaneous direction of travel in degrees to the true north.
HeadingError Double Heading error, value in degrees.
MagneticCourse Double This is the information about the current direction in degrees to magnetic north.
MagneticCourseError Double Magneticcourser error.

Table 6.124: map: GetList

Error code value Description
-302 No Interface
0 Success
1007 No memory
1009 Server busy
1011 Access denied
1016 Service timed-out

Table 6.125: Error codes

Error messages Description
Location:GetList:Wrong
category info should be
BasicLocationInformation/
GenericLocationInfo

Indicates argument supplied for category informa-
tion is wrong.

Location:GetList:BadArgument -
Updateoptions

Indicates argument supplied for
Updateoptions is wrong.

Location:GetList:Negative Time
Interval

Indicates time interval supplied is negative.

Location:GetList:Updateoptions
Type Mismatch

Indicates a wrongly supplied type for
Updateoptions.

Table 6.126: Error messages

6.6. Location 177

import scriptext
import e32

Using e32.Ao_lock() to make main function wait till callback is hit
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def get_list(trans_id, event_id, input_params):

if event_id != scriptext.EventCompleted:
Check the event status

print "Error in retrieving required info"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message:" + input_params["ReturnValue"]["ErrorMessage"]
else:

print "The landmarks are"
for i in input_params["ReturnValue"]:

print "Longitude"
print i["Longitude"]
print "Latitude"
print i[’Latitude’]
print "Altitude"
print i[’Altitude’]
print "SatelliteNumView"
print i[’SatelliteNumView’]
print "SatelliteNumViewUsed"
print i[’SatelliteNumViewUsed’]
print "HorizontalSpeed"
print i[’HorizontalSpeed’]

lock.signal()

Async Query a location with search criteria
location_handle = scriptext.load(’Service.Location’, ’ILocation’)
event_id = location_handle.call(’GetList’, {’LocationInformationClass’: u’BasicLocationInformation’, ’Updateoptions’: {’UpdateInterval’: u’1’, ’UpdateTimeOut’: u’15’, ’UpdateMaxAge’: u’0’, ’PartialUpdates’: u’False’}}, callback=get_list)

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.6.2 Trace

Trace method is used to retrieve periodic updates on the current location of the device. You can use this method
to track the movements of the device.

The following is an example for using Trace:

event_id = location_handle.call(’Trace’, {’LocationInformationClass’: u’GenericLocationInfo’, ’Updateoptions’: {’UpdateInterval’: u’10’, ’UpdateTimeOut’: u’50’, ’UpdateMaxAge’: u’5’, ’PartialUpdates’: u’True’}}, callback=callback_function)

The following table summarizes the specification of Trace:

Input Parameters

Input parameter specifies the type of device location information returned and how it is returned.

Output Parameters

178 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Interface ILocation
Description Tracks the movements of the device.
Response Model Asynchronous
Pre-condition Device must be Location aware (that is, it must have some lo-

cation service provider in form of GPS, AGPS, or Bluetooth).

ILocation interface loaded.

No other instance of Trace is presently pending or is in use.
Post-condition Nil

Output parameters contain the requested information. They also contain ErrorCode, and ErrorMessage if
the operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to inform the consumer of any change in current location, in
asynchronous mode:

6.6. Location 179

Name Type Range Description
[Location
Information
Class]

unicode string Basic
Location
Information

Generic
Location
Info

This specifies category of location
information. You will receive de-
tailed location estimations on speci-
fying Generic Location Info.

Default value for this argument is
BasicLocationInformation.

Refer to Updateoptions descrip-
tion to know more about what are
the output that are guaranteed to be
in the location estimates for each of
the LocationInformationClass
provided.

[Updateoptions] map
Name: Type
[UpdateInterval]
(Microsec-
onds): int32
[UpdateTimeOut]
(Microsec-
onds): int32
[UpdateMaxAge]
(Microsec-
onds): int32
[PartialUpdates]
(Microseconds):
bool

NA This specifies update option used
while retrieving location estimation.

Default values are used if no argument is
specified as part of input argument list.

UpdateInterval specifies the
time interval between two con-
secutive location estimates.

If location server is not able to give
location estimates within specified
UpdateTimedOut, you will re-
ceive SErrTimedOut error.

UpdateMaxAge specifies the expiry
time for the position information cache. It
means that when a position request is made
the position information can be returned
from the cache, (Managed by location
server) as long as the cache is not older
that the specified maximum age.
The default value is zero that
is, the position information will
never be returned from cache.

Setting PartialUpdates to FALSE
ensures that you will get at least
BasicLocationInformation
(Longitude, Latitude, and Altitude.)

By default, following values (in sec-
onds) are used for these input pa-
rameters. UpdateInterval = 1
UpdateTimeOut = 15
UpdateMaxAge = 0
PartialUpdates = FALSE

note:

In case the following order is
not maintained when you supply
value for updateoption, it re-
turns the error SErrArgument.
UpdateTimeOut¿UpdateInterval¿MaxAge

Table 6.127: Input parameters for Trace

180 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range (Type:
string)

Description

ErrorCode int NA Service specific error code on failure of the
operation.

ErrorMessage string NA Error description in Engineering English.
ReturnValue For more information, refer

table map: Trace 6.129
NA It contains location estima-

tions. In case you specify
BasicLocationInformation
in the input list only longitude, lat-
itude and altitude will return.

note:
If PartialUpdates is set
to FALSE you must get lon-
gitude, altitude and latitude.
The WGS-84 datum is used to
refer co-ordinates. Also repre-
sentation is in decimal degree.

In case generic information is requested,
there is no guarantee that all infor-
mation mentioned here will be ob-
tained as it depends on the underlying
GPS technology and other factor like
number of satellites, which are avail-
able when location fix is obtained.

note:
Not all GPS technology are capable
of retrieving all information listed here.
For example, if you select network based
positioning technology it does not have
capability to retrieve satellites information.
In situation where a particular field can not
be retrieved from the underlying GPS tech-
nology, it will not be present in the output
list mentioned here.

Table 6.128: Output parameters for Trace

6.6. Location 181

Data Type Description
Longitude Double This is the longitudinal data. Degree value is in the range [+180, -180].
Latitude Double This is the latitudinal data. Degree value is in the range [+90, -90].
Altitude Double Altitude data, height in meters.
SatelliteNumView Double Number of field satellite currently in view.
SatelliteNumViewUsed Double Number of satellites used.
HorizontalSpeed Double Horizontal speed, value in meters per second.
HorizontalSpeedError Double Horizontal speed error, value in meters per second.
TrueCourse Double This is the information about the current direction in degrees to true north.
TrueCourseError Double This is the true course error in degrees.
MagneticHeading Double This is the current direction in degrees to magnetic north.
MagneticHeadingError Double True magnetic course error in Degrees.
Heading Double This is the current instantaneous direction of travel in degrees to the true north.
HeadingError Double Heading error, value in degrees.
MagneticCourse Double This is the information about the current direction in degrees to magnetic north.
MagneticCourseError Double Magneticcourser error.

Table 6.129: map: Trace

Error code value Description
0 Success
1011 Access denied
1012 Item not found

Table 6.130: Error codes

Error messages Description
Location:Trace:Invalid
LocationInformationClass

Indicates argument supplied for category information is
wrong.

Location:Trace:Updateoptions
Type Mismatch

Indicates wrong type for Updateoptions.

Location:Trace:Badargument -
updateoptions

Indicates wrongly supplied updateoptions.

Location:Trace:Negative Time
Interval

Indicates wrongly supplied time interval as part of
Updateoptions.

Table 6.131: Error messages

182 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext
import e32

Using e32.Ao_lock() to make main function wait till callback is hit
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def Trace(trans_id, event_id, input_params):

if event_id != scriptext.EventCompleted:
Check the event status

print "Error in retrieving required info"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message:" + input_params["ReturnValue"]["ErrorMessage"]
else:

print "The location change are as "
for i in input_params["ReturnValue"]:

print "Longitude"
print i["Longitude"]
print "Latitude"
print i[’Latitude’]
print "Altitude"
print i[’Altitude’]
print "SatelliteNumView"
print i[’SatelliteNumView’]
print "SatelliteNumViewUsed"
print i[’SatelliteNumViewUsed’]
print "HorizontalSpeed"
print i[’HorizontalSpeed’]

lock.signal()

Async Query a location with search criteria
location_handle = scriptext.load(’Service.Location’, ’ILocation’)
event_id = location_handle.call(’Trace’, {’LocationInformationClass’: u’GenericLocationInfo’, ’Updateoptions’: {’UpdateInterval’: u’10’, ’UpdateTimeOut’: u’50’, ’UpdateMaxAge’: u’5’, ’PartialUpdates’: u’True’}})

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.6.3 CancelNotification

CancelNotification method is used to cancel an outstanding asynchronous call.

The following is an example for using CancelNotification:

cancel_output = location_handle.call(’CancelNotification’, {’CancelRequestType’: u’GetLocCancel’})

The following table summarizes the specification of CancelNotification:

Input Parameters

The parameters specify whether to cancel a GetList call or a Trace call. The object must contain the
CancelRequestType property (unicode string) that is used to specify the type of call to cancel.

Output Parameters

6.6. Location 183

Interface ILocation
Description Cancels the registered listeners with the service provider.
Response Model Synchronous
Pre-condition Device must be Location aware (that is, it must have some lo-

cation service provider in form of GPS, AGPS, or Bluetooth).

ILocation interface loaded.
Post-condition Nil

Name Type Range Description
CancelRequestType unicode string TraceCancel

GetLocCancel
Contains specific information about the
type of notification expected to be can-
celed.

Table 6.132: Input parameters for CancelNotification

Output parameters contain ErrorCode, and ErrorMessage if the operation fails.

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.133: Output parameters for CancelNotification

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to cancel the registered listeners with the service provider:

import scriptext
location_handle = scriptext.load(’Service.location’, ’ILocation’)

try:
cancel_output = location_handle.call(’CancelNotification’, {’CancelRequestType’: u’GetLocCancel’})
errorcode = cancel_output["ErrorCode"]
if errorcode != 0:

print "Error in cancelling the request"
else:

ret_val = cancel_output["ReturnValue"]

print "The cancellation request is successful"

except scriptext.ScriptextError, err:
print "Error performing the operation : ", err

184 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Error code value Description
1000 Invalid service argument
1012 Item not found

Table 6.134: Error codes

Error messages Description
Location:Cancel:BadArgument
- cancel type

Indicates error in supplied cancel type.

Location:Cancel:Missing
cancel type

Indicates missing cancel type in input.

Location:Cancel:Wrong cancel
type

Indicates cancel type supplied is wrong.

Table 6.135: Error messages

6.6.4 MathOperations

MathOperations performs mathematical calculations based on a source location and a target location.

The following is an example for using MathOperations:

Distance_measured = location_handle.call(’MathOperations’, {’MathRequest’: u’FindDistance’, ’DistanceParamSource’: {’Longitude’: u’10’, ’Latitude’: u’15’, ’Altitude’: u’20’}, ’DistanceParamDestination’: {’Longitude’: u’40’, ’Latitude’: u’55’, ’Altitude’: u’20’}})

The following table summarizes the specification of MathOperations:

Interface ILocation
Description Performs mathematical calculations based on a source location and a

target location.
Response Model Synchronous
Pre-condition Device must be Location aware (that is, it must have some lo-

cation service provider in form of GPS, AGPS, or Bluetooth).

ILocation interface loaded.
Post-condition Nil

Input Parameters

Input parameter specifies the mathematical operation such as FindDistance, FindBearingTo and so on,
and position co-ordinates for performing the mathematical operation.

Output Parameters

Output parameter contains ReturnValue. It also contains ErrorCode, and ErrorMessage if the
operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

6.6. Location 185

Name Type Range Description
MathRequest string FindDistance

FindBearingTo
MoveCoordinates

Specifies the mathematical opera-
tion.

DistanceParamSource map. For
more infor-
mation, refer
table map-
Distance
Param
Source
6.137

NA This specifies the po-
sition co-ordinates.
Note that expected datum
here is WGS-84 with deci-
mal degree representation.
Also note that altitude supplied
does not effect the result of cal-
culation. It is used to maintain a
uniform input argument, which
makes it easy to use.

DistanceParamDestination map. For
more infor-
mation, refer
table map-
Distance
Param
Destination
6.138

NA Specifies co-ordinates of another
position. It is not required when
value specified in the first param-
eter is MoveCoordinates.
Note that expected datum here is
WGS-84 with decimal degree rep-
resentation.

MoveByThisDistance
(only if MathRequestType
is MoveCoordinates)

double NA Move source position by the speci-
fied the distance.

(Only if MathRequestType is
MoveCoordinates)

double NA Move the source position by the
specified bearing.

Table 6.136: Input parameters for MathOperations

Key Type Description
Longitude double Longitude data
Latitude double Latitude data
Altitude double Altitude data

Table 6.137: map- DistanceParamSource

Key Type Description
Longitude double Longitude data
Latitude double Latitude data
Altitude double Altitude data

Table 6.138: map- DistanceParamDestination

186 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range (Type:
string)

Description

ReturnValue The table 6.140
describes output
obtained for various
input combination

NA Resultant calculation.
In case you request to Move coordinates,
map described in column 2 will be returned.
Note that if distance between two coordinate
is requested, it is returned in meters while
FindBearingTo returned is in degrees
counting clockwise relative to true north.

ErrorCode int NA Service specific error code on failure of the oper-
ation.

ErrorMessage string NA Error description in Engineering English.

Table 6.139: Output parameters for MathOperations

MathRequest type
in input

Obtained output
type

Description

FindDistance double Contains the calculated distance in meters.
FindBearingTo double Bearing between two points.
MoveCoordinates
map

Map described in the
table 6.141 is re-
turned, which repre-
sents the translated
coordinate.

Table 6.140: map- Resultant output

Key Type Description
Longitude double Longitude data
Latitude double Latitude data
Altitude double Altitude data

Table 6.141: map- MoveCoordinates

Error code value Description
1002 Bad argument type

Table 6.142: Error codes

Error messages Description
Location:MathOperations:Missing
argument- MathRequest

Indicates missing Mathrequest argument.

Location:MathOperations:Wrong
argument- MathRequest

Indicates supplied MathRequest argument is wrong.

Location:MathOperations:Missing
argument- locationcoordinate

Indicates missing locationCoordinate in input.

Location:MathOperations:Missing
argument- MoveByThisDistance

Indicates missing MoveByThisDistance in input.

Location:MathOperations:Missing
argument- MoveByThisBearing

Indicates missing MoveByThisBearing in input.

Location:MathOperations:TypeMismatch-
MoveByThisDistance

Indicates type for Movebydistance is wrong.

Location:MathOperations:TypeMismatch-
MoveByThisBearing

Indicates type for Movebythisbearing is wrong.

Table 6.143: Error messages

6.6. Location 187

Example

The following sample code illustrates how to perform specific calculations on user provided data:

import scriptext
location_handle = scriptext.load(’Service.location’, ’ILocation’)

try:
Distance_measured = location_handle.call(’MathOperations’, {’MathRequest’: u’FindDistance’, ’DistanceParamSource’: {’Longitude’: u’10’, ’Latitude’: u’15’, ’Altitude’: u’20’}, ’DistanceParamDestination’: {’Longitude’: u’40’, ’Latitude’: u’55’, ’Altitude’: u’20’}})
errorcode = Distance_measured["ErrorCode"]
if errorcode != 0:

print "Error in retrieving the Distance covered"
else:

ret_val = Distance_measured["ReturnValue"]
if ret_val["distance covered"]["Value"] == ’50’:

print "The distance covered is retrieved"

except scriptext.ScriptextError, err:
print "Error performing the operation : ", err

188 Chapter 6. scriptext - Platform Service API Usage from Python runtime

6.7 Logging

The Logging service allows Python applications to integrate logging functionality of S60 device. It is used to
add, read, and delete logging events such as call logs, messaging logs, data logs, and so on in the device.

It also provides a simple interface to the application developer to add, read, and delete events occurring in the
device.

The following sample code is used to load the provider:

import scriptext
msg_handle = scriptext.load(’Service.Logging’, ’IDataSource’)

The following table summarizes the Logging Interface:

Service provider Service.Logging
Supported interfaces IDataSource

The following table lists the services available in Logging:

Services Description
Add 6.7.1 Adds a new event to the event log.
Getlist 6.7.2 Retrieves an event from the event log as specified by the input filter.
Delete 6.7.3 Deletes an event from the Event Log.
RequestNotification
6.7.4

Requests for notification for the updates occurring in the log.

6.7.1 Add

Add is used to add a new event to the event log. It takes a set of input parameters that define the Type and
properties of the event log to add.

The following is an example for using Add:

log_id = logging_handle.call(’Add’,{’Type’: u’Log’, ’Item’: {’EventType’: 3, ’Direction’: 1, ’EventDuration’: 2, ’DeliveryStatus’: 1, ’PhoneNumber’: u’666’}})

The following table summarizes the specification of Add:

Interface IDataSource
Description Adds a new event to the event log.
Response Model Synchronous and asynchronous
Pre-condition IDataSource interface is loaded.
Post-condition A new event is added to the event log.

Input Parameters

Input parameter specifies the Type, and the properties of the event log. Input parameter properties are Type and
Item.

Output Parameters

6.7. Logging 189

Name Type Range Description
Type unicode string Log Specifies the Content Type.
Item map

For more
information,
refer map
6.145

EventType (Indicates the
type of log Event)
EKLogCallEventType: 0
EKLogDataEventType: 1
EKLogFaxEventType: 2
EKLogShortMessageEventType: 3
EKLogPacketDataEventType: 4

Direction
EIncomingEvent: 0
EOutgoingEvent: 1
EIncomingEvent
Alternateline: 2
EOutgoingEvent
Alternateline: 3
EFetchedEvent: 4
EMissedEvent: 5
EMissedEvent Alternateline: 6

DeliveryStatus
EStatusPending: 0
EStatusSent: 1
EStatusFalied: 2
EStatusNone: 3
EStatusDone: 4
EStatusNotSent: 5
EStatusScheduled: 6

LogFlags
EKLogEventContactSearched: 0
EKLogEventRead: 1

note:
Flag EKLogEventRead is set when
you read the event in the log database.
Flag EKLogEventContactSearched
is set when you search through contact
database for performing any operation,
like voice call or sms.

Adds the given event to the
event log.

Table 6.144: Input parameters for Add

190 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Key Value Description
EventType 32 bit int Unique Id to identify event type.
[RemoteParty] unicode string Describes the destination of the out going event

or source of incoming event. If the length of the
specified string is greater than 64 characters, then
the data is truncated.

[Direction] 32 bit int The direction of a call means incoming, outgoing,
and so on.

[EventDuration] 32 bit int Time in seconds.
[DeliveryStatus]32 bit int Delivered, pending, or failed.
[Subject] unicode string Describes the subject for the event. If the length

of the specified string is greater than 64 characters,
then the data is truncated.

[PhoneNumber] unicode string The phone number is associated with the event.
This is used when the number cannot be stored in
any other field. If the length of the specified string
is greater than 100 characters, then the number is
truncated.

[EventData] 8-bit Data Specific data associated with the event.
[Link] 32 bit int Link is used to relate this event

to an entity in other application.
For example, it can be used to associate the
event with the call ID or the message ID for
emails and faxes.

[LogFlags] 32 bit int Sets the specified flags for this event. The function
does not change any of the other flag bit settings.

[RepeatDates] List of dates NA

Table 6.145: map

6.7. Logging 191

Output contains ReturnValue. It also contains ErrorCode and an Error Message if the operation fails.
ReturnValue contains the identifier in the event log corresponding to the user specified input parameters.

Name Type Range Description
ErrorCode 32 bit int NA Contains the SAPI specific

error code when the opera-
tion fails.

ErrorMessage string NA Error Description in Engi-
neering English.

ReturnValue string Unique identifier for the particular
event in the log.

Table 6.146: Output parameters for Add

Errors

The following table lists the error codes and their values:

Error code value Description
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1004 Service not supported

Table 6.147: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Logging:Add:TypeInvalid Invalid Type is passed to contenttype parameter.
Logging:Add:TypeMissing Content Type missing in the inputparam list.
Logging:Add:ItemInvalid Invalid Type is passed to Item parameter.
Logging:Add:ItemMissing Item map missing in the inputparam list.
Logging:Add:EventTypeInvalid Invalid Type is passed to EventType parameter.
Logging:Add:EventTypeMissing EventType field is missing in the Item map.
Logging:Add:RemotePartyInvalid Invalid Type is passed to RemoteParty parameter.
Logging:Add:EventDurationInvalidInvalid Type is passed to EventDuration parameter.
Logging:Add:DeliveryStatusInvalidInvalid Type is passed to DeliveryStatus parameter.
Logging:Add:SubjectInvalid Invalid Type is passed to Subject parameter.
Logging:Add:PhoneNumberInvalid Invalid Type is passed to PhoneNumber parameter.
Logging:Add:EventDataInvalid Invalid Type is passed to EventData parameter.
Logging:Add:LinkInvalid Invalid Type is passed to Link parameter.
Logging:Add:LogFlagsInvalid Invalid Type is passed to LogFlags parameter.
Logging:Add:DirectionInvalid Invalid Type is passed to Direction parameter.

Table 6.148: Error messages

Example

The following sample code illustrates how to add a log entry:

192 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext
logging_handle = scriptext.load(’Service.Logging’, ’IDataSource’)
log_id = logging_handle.call(’Add’, {’Type’: u’Log’, ’Item’: {’EventType’: 3, ’Direction’: 1, ’EventDuration’: 2, ’DeliveryStatus’: 1, ’PhoneNumber’: u’666’}})

6.7.2 GetList

GetList retrieves an event from the event log as specified by the input filter. It takes a set of input parameters
that define Type and Filter for retrieving information.

The following are the examples for using GetList:

Synchronous

logging_info = logging_handle.call(’GetList’, {’Type’: u’Log’,})

Asynchronous

logging_handle.call(’GetList’, {’Type’: u’Log’,}, callback=logging_callback)

where, logging_callback is the callback function.

The following table summarizes the specification of GetList:

Interface IDataSource
Description Gets the specified event details from event log.
Response Model Synchronous and asynchronous
Pre-condition IDataSource interface is loaded.
Post-condition Nil

Input Parameters

Input parameter specifies the Type and Filter.

Output Parameters

Output contains ReturnValue. It also contains ErrorCode and an ErrorMessage if the operation fails.
ReturnValue contains an iterable wrapper of entries containing all relevant fields of the user specified Item.

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to get the logging details on the phone:

6.7. Logging 193

Name Type Range Description
Type unicode string Log Specifies the Content Type.
[Filter] map

For more
information,
refer map
6.150

RecentList
EKLogNullRecentList: -1
EKLogRecentIncomingCalls: 1
EKLogRecentOutgoingCalls: 2
EKLogRecentMissedCalls: 3

A value of EKLogNullRecentList in-
dicates to include events from all of the re-
cent event lists.
EventType
EKLogCallEventType: 0
EKLogDataEventType: 1
EKLogFaxEventType: 2
EKLogShortMessageEventType: 3
EKLogPacketDataEventType: 4

Direction
EIncomingEvent: 0
EOutgoingEvent: 1
EIncomingEvent
Alternateline: 2
EOutgoingEvent
Alternateline: 3
EFetchedEvent: 4
EMissedEvent: 5
EMissedEvent Alternateline: 6

DeliveryStatus
EStatusPending: 0
EStatusSent: 1
EStatusFalied: 2
EStatusNone: 3
EStatusDone: 4
EStatusNotSent: 5
EStatusScheduled: 6

LogFlags
EKLogEventContactSearched: 0
EKLogEventRead: 1

note:
Flag EKLogEventRead is set when
you read the event in the log database.
Flag EKLogEventContactSearched
is set when you search through contact
database for performing any operation,
like voice call or sms.

This is an optional parame-
ter. Filter contains the search
criteria for specific event
search in the log database.

When an empty filter is passed, it
gets all the events from the database
by default.

Table 6.149: Input parameters for GetList

194 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Key Value Description
Id unicode string Unique Id for the particular event in the log.

note:
To specify values for other fields in the map are
not valid, when the Id field is used for querying.
If specified, then the values are ignored.

RecentList 32 bit int Gets the 20 recent call list. Initialises or refreshes
the view for the specified recent event list,
conforming to the specified filter. On successful
completion, the view is positioned at the first that
is, most recent event in the recent event list.

Recent lists also have a mechanism for du-
plicate event handling, set up via the re-
cent list configuration. for example, two
calls to the same number will only take
up one entry on the outgoing calls list.

note:
To specify values for other fields
in the map are not valid, when the
RecentList field is used for querying.
If specified then, the values are ignored.

EventType 32 bit int Unique Id to identify event type.
[PhoneNumber] unicode string The phone number is associated with the event.

This is used when the number cannot be stored in
any other field. If the length of the specified string
is greater than 100 characters, then the number is
truncated.

[RemoteParty] unicode string Describes the destination of the out going event
or source of incoming event. If the length of the
specified string is greater than 64 characters, then
the data is truncated.

[Direction] 32 bit int The direction of a call means incoming, outgoing,
and so on.

[DeliveryStatus] 32 bit int Delivered, pending, or failed.
[EndTime] datetime Sets the specified EndTime to be used by the filter.
[LogFlags] 32 bit int Sets the specified flags for this event.

Table 6.150: map

6.7. Logging 195

Name Type Range Description
ReturnValue Iterator (map)

EventType: 32 bit int
RemoteParty: String
Direction: 32 bit int
EventTime: datetime
EventDuration: 32 bit int
DeliveryStatus: 32 bit int
Subject: string
PhoneNumber: string
Description: string
EventData: 8-bit Data
Link: 32 bit int
id: string
LogFlags: 32 bit int

NA The output is an iterable
list of entries, which on
each invocation returns a
map containing all rele-
vant fields of an Item.

note:
Description and
EventTime are auto-
matically set by the system
for a created event.
For example, The Descrip-
tion for CallEvent is
voice call, SMS Event
is short message.
EventTime is the time at
which the event is created.
This should be a datetime
object.

ErrorMessage string NA Error Description in Engi-
neering English.

ErrorCode 32 bit int NA Contains the SAPI specific
error code when the opera-
tion fails.

Table 6.151: Output parameters for GetList

Error code value Description
0 Success
1002 Bad argument type
1003 Missing argument
1004 Service not supported

Table 6.152: Error codes

Error messages Description
Logging:GetList:TypeInvalid Invalid Type is passed to contenttype parameter.
Logging:GetList:TypeMissing Content Type missing in the inputparam list.
Logging:GetList:FilterInvalid Invalid Type is passed to Filter parameter.
Logging:GetList:IdInvalid Invalid Type is passed to Id parameter.
Logging:GetList:RecentListInvalid Invalid Type is passed to RecentList parameter.
Logging:GetList:PhoneNumberInvalid Invalid Type is passed to PhoneNumber parameter.
Logging:GetList:DirectionInvalid Invalid Type is passed to Direction parameter.
Logging:GetList:DeliveryStatusInvalid Invalid Type is passed to DeliveryStatus parameter.
Logging:GetList:LogFlagsInvalid Invalid Type is passed to LogFlags parameter.
Logging:GetList:EndTimeInvalid Invalid Type is passed to EndTime parameter.
Logging:GetList:RemotePartyInvalid Invalid Type is passed to RemoteParty parameter.
Logging:GetList:EventTypeInvalid Invalid Type is passed to EventType parameter.

Table 6.153: Error messages

196 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext
Load the desired SAPI
logging_handle = scriptext.load(’Service.Logging’, ’IDataSource’)
try:

logging_info = logging_handle.call(’GetList’, {’Type’: u’Log’,})
for item in logging_info:

print item[’EventType’]
print item[’RemoteParty’]
print item[’Direction’]
print item[’EventTime’]
print item[’Subject’]
print item[’PhoneNumber’]
print item[’Description’]
print item[’EventData’]

except scriptext.ScriptextError, err:
print "Error getting the list of Installed Application : ", err

6.7.3 Delete

Delete is used to delete a specified event from the event Log.

The following is an example for using Delete:

logging_handle.call(’Delete’, {’Type’: u’Log’, ’Data’: {’id’: log_id,}})

The following table summarizes the specification of Delete:

Interface IDataSource
Description Deletes events in the event log.
Response Model Synchronous and asynchronous
Pre-condition IDataSource interface is loaded.
Post-condition Nil

Input Parameters

Input parameter specifies the Type and its Id for performing the delete operation.

Name Type Range Description
Type unicode string Log Specifies the Content Type.
Data map Id: unicode string NA Deletes the event specified by the Id.

Table 6.154: Input parameters for Delete

Output Parameters

Output contains ErrorCode and ErrorMessage, if the operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

6.7. Logging 197

Name Type Range Description
ErrorMessage string NA Error Description in Engineering English.
ErrorCode 32 bit int NA Contains the SAPI specific error code when the operation fails.

Table 6.155: Output parameters for Delete

Error code value Description
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1012 Item not found

Table 6.156: Error codes

The following table lists the error messages and their description:

Error messages Description
Logging:Delete:TypeInvalid Invalid Type is passed to contenttype parameter.
Logging:Delete:TypeMissing Content Type missing in the inputparam list.
Logging:Delete:DataInvalid Invalid Type is passed to Data parameter.
Logging:Delete:DataMissing Data map missing in inputparam list.
Logging:Delete:idInvalid Invalid Type is passed to Id parameter.
Logging:Delete:idMissing Id field is missing in the Data map.

Table 6.157: Error messages

Example

The following sample code illustrates how to delete an entry from the log:

import scriptext

logging_handle = scriptext.load(’Service.Logging’,’IDataSource’)
logging_handle.call(’Delete’, {’Type’: u’Log’, ’Data’: {’id’: log_id,}})

6.7.4 RequestNotification

RequestNotification is used to request notification for the updates occurring to log and register for any
changes happening to event log.
It is used in asynchronous mode only.

The following is an example for using RequestNotification:

logging_id = logging_handle.call(’RequestNotification’, {’Type’: u’Log’, ’Filter’: {’DelayTime’: 600000}}, callback=logging_app_callback)

where, logging_app_callback is user defined function.

The following table summarizes the specification of RequestNotification:

Input Parameters

Input parameter specifies the Type and delay time in microseconds, which elapses before the notification request

198 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Interface IDataSource
Description Registers for the changes occurring to the event log.
Response Model Asynchronous
Pre-condition IDataSource interface is loaded.
Post-condition Nil

can complete.

Name Type Range Description
Type unicode string Log Specifies the Content Type.
Filter map DelayTime: 32 bit int NA The minimum time in microsec-

onds, which elapses before the no-
tification request can complete.

Table 6.158: Input parameters for RequestNotification

Output Parameters

Output contains ErrorCode and ErrorMessage, if the operation fails.

Name Type Range Description
ErrorMessage string NA Error Description in Engineering English.
ErrorCode 32 bit int NA Contains the SAPI specific error code when the operation fails.

Table 6.159: Output parameters for RequestNotification

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to register changes in the event log, in asynchronous mode:

6.7. Logging 199

Error code value Description
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1012 Item not found

Table 6.160: Error codes

Error messages Description
Logging:RequestNotification:TypeInvalid Invalid Type is passed to contenttype

parameter.
Logging:RequestNotification:TypeMissing Content Type missing in the inputparam

list.
Logging:RequestNotification:FilterMissing Filter map missing in inputparam list.
Logging:RequestNotification:FilterInvalid Invalid Type is passed to Filter parameter.
Logging:RequestNotification:DelayTimeMissing DelayTime is missing in the Filter Map.
Logging:RequestNotification:DelayTimeInvalid Invalid Type is passed to DelayTime pa-

rameter.

Table 6.161: Error messages

import scriptext
import e32
lock = e32.Ao_lock()

def logging_app_callback(trans_id, event_id, input_params):
if trans_id != logging_id and event_id != scriptext.EventCompleted:

print "Error in servicing the request"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message is: " + input_params["ReturnValue"]["ErrorMessage"]
else:

print "Changes in the Log Event Notified "

lock.signal()

Load appmanage service
Load the desired SAPI
logging_handle = scriptext.load(’Service.Logging’, ’IDataSource’)
logging_id = logging_handle.call(’RequestNotification’,

{’Type’: u’Log’, ’Filter’: {’DelayTime’: 600000}},
callback=logging_app_callback)

print "Waiting for the request to be processed!"
lock.wait()

print "Request complete!"

200 Chapter 6. scriptext - Platform Service API Usage from Python runtime

6.8 Messaging

The Messaging service enables Python applications to integrate messaging services of S60 device. It is used
either to retrieve message information or use the messaging services, or both.

Using the Messaging service, you can access/iterate inbox, send messages (SMS/MMS), register for new
message notification, status changes of messages and delete messages.

The following sample code is used to load the provider:

import scriptext
messaging_handle = scriptext.load(’Service.Messaging’, ’IMessaging’)

The following table summarizes the Application Manager Interface:

Service provider Service.Messaging
Supported interfaces IMessaging

The following table lists the services available in Application Manager:

Services Description
GetList 6.8.1 Retrieves list of messaging objects from messaging center based on the

search/sort inputs.
Send 6.8.2 Sends message.
RegisterNotification 6.8.3 Registers for new message notification.
CancelNotification 6.8.4 Cancels notification for incoming messages.
ChangeStatus 6.8.5 Changes status for the message.
Delete 6.8.6 Deletes message.

6.8.1 GetList

GetList is used to retrieve a list of messaging objects from messaging center based on the search / sort inputs.
Each object contains messaging information that is, data and metadata about a single message. It is available
only in synchronous mode.

The following is an example for using GetList:

sms_iter = messaging_handle.call(’GetList’, {’Type’: u’Inbox’})

The following table summarizes the specification of GetList:

Interface IMessaging
Description Retrieves an iterable message list based on the search / sort inputs.
Response Model Synchronous
Pre-condition Valid instance of IMessaging interface is instantiated.
Post-condition Nil

Input Parameters

Input parameter specifies the folder from which the messages are retrieved, also the Filter criteria and sort order
for the returned list. Input parameter has three properties: Type, Filter and SortOrder.

6.8. Messaging 201

Name Type Range Description
Type unicode string Inbox Performs operation based on the specified

content types.
[Filter] map

[MessageTypeList]:
List of unicode strings
[MessageId]: 32 bit int
[SenderList]: List
of unicode strings
[Subject]:
unicode string
[StartDate]: Date
[EndDate]: Date

MessageTypeList:
SMS
MMS

It specifies the search information.

If StartDate alone is specified, all mes-
saging from the data will be returned and if
EndDate alone is specified, all messages
before the end date will be returned. And
if both are specified then all the messages
within the two bounds will be returned.
An exception will be raised if EndDate
is earlier than StartDate.

[SortOrder] map
Key: unicode string
Order: unicode string

Key:
Date
Size
Sender
Subject
MessageId

Order:
Ascending
Descending

Sort Information. If not specified sorting is
done on Date in ascending order.

Table 6.162: Input parameters for Getlist

Output Parameters

Output parameters contain the requested information. They also contain ErrorCode, and ErrorMessage if
the operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to iterate through inbox and print the SMS ’Sender’ IDs:

import scriptext

messaging_handle = scriptext.load(’Service.Messaging’, ’IMessaging’)
This ’GetList’ request returns all the SMS in the inbox as an iterable map
sms_iter = messaging_handle.call(’GetList’, {’Type’: u’Inbox’})
sender_list = []
for sms_dict in sms_iter:

if sms_dict[’MessageType’] == ’SMS’:
sender_list.append(sms_dict[’Sender’])
print "ID list :", sender_list

202 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range (Type: string) Description
ReturnValue Iterable List

(of maps)
map:
MessageType:
string
Sender: string
Subject: string
Time: Time
Priority: string
Attachment: bool
Unread: bool
MessageId:
32 bit int
BodyText: string
To: List of strings
Cc: List of strings
Bcc: List of strings
AttachmentList:
List of map

AttachmentList
contains a list of
Map (Attachment):
AttachmentMap:
FileName: string
FileHandle:
FileBuffer
MimeType: string
FileSize: int

MessageTypeList:
SMS
MMS
Unknown

Priority:
Low
Medium
High

An iterable list of the resultant mes-
sages. Current implementation rec-
ognizes only SMS and MMS, other
types of messages are unknown. SMS
does not support subject, so it returns
first few characters of the body text.

Priority is applicable for Email
type of messages. For SMS and
MMS, it gives default value set
by underlying messaging server.

Note:
Cc and Bcc fields are not applicable
for SMS. Also, in case MMS has body
text in it ; it appears as attachment. So the
output value for body text field in case of
MMS will be empty.

ErrorCode int NA Service specific error code on failure of the
operation.

ErrorMessage string NA Error description in Engineering English.

Table 6.163: Output parameters for GetList

Error code value Description
0 Success
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1007 No memory

Table 6.164: Error codes

6.8. Messaging 203

Error messages Description
Messaging:GetList: Type Type
Invalid

Specifies if the type of Type parameter is invalid.

Messaging:GetList:Type Value
Incorrect

Specifies if the value of MessageType parameter is in-
correct.

Messaging:GetList:Type Missing Specifies if the MessageType parameter is missing.
Messaging:GetList:Filter Type
Invalid

Specifies if the type of Filter parameter is invalid.

Messaging:GetList:SenderList Type
Invalid

Specifies if the type of SenderList parameter is in-
valid.

Messaging:GetList:SenderList
Element Value Incorrect

Specifies if the value of element of SenderList pa-
rameter is incorrect.

Messaging:GetList:SenderList
Element Type Invalid

Specifies if the type of element of SenderList param-
eter is invalid.

Messaging:GetList:MessageTypeList
Type Invalid

Specifies if the type of MessageTypeList parameter
is invalid.

Messaging:GetList:MessageTypeList
Element Value Incorrect

Specifies if the value of element of MessageTypeList
parameter is incorrect.

Messaging:GetList:MessageTypeList
Element Type Invalid

Specifies if the type of element of MessageTypeList pa-
rameter is invalid.

Messaging:GetList:MessageId Type
Invalid

Specifies if the type of MessageId parameter is invalid.

Messaging:GetList:Subject Type
Invalid

Specifies if the type of Subject parameter is invalid.

Messaging:GetList:StartDate Type
Invalid

Specifies if the type of StartDate parameter is invalid.

Messaging:GetList:StartDate Value
Incorrect

Specifies if the value of StartDate parameter is incor-
rect.

Messaging:GetList:EndDate Type
Invalid

Specifies if the type of EndDate parameter is invalid.

Messaging:GetList:EndDate Value
Incorrect

Specifies if the value of EndDate parameter is incorrect.

Messaging:GetList:SortOrder Type
Invalid

Specifies if the type of SortOrder parameter is invalid.

Messaging:GetList:SortOrder Value
Incorrect

Specifies if the value of SortOrder parameter is incor-
rect.

Messaging:GetList:Key Type
Invalid

Specifies if the type of Key parameter is invalid.

Messaging:GetList:Order Type
Invalid

Specifies if the type of Order parameter is invalid.

Messaging:GetList:Asynchronous
Operation not supported

Specifies if GetList is called asynchronously.

Table 6.165: Error messages

204 Chapter 6. scriptext - Platform Service API Usage from Python runtime

6.8.2 Send

Send is used to send an SMS or MMS message. It takes a set of input parameters that specifies the message
type, and the message details associated with that particular message type.

The following are the examples for using Send:

Synchronous

messaging_handle.call(’Send’, {’MessageType’: u’SMS’, ’To’: u’12345678’,
’BodyText’: u’Hi’})

Asynchronous

messaging_handle.call(’Send’, {’MessageType’: u’SMS’, ’To’: u’12345678’, ’BodyText’: u’Hi’},
callback=callback_function)

where, callback_function is a user defined callback function.

The following table summarizes the specification of Send:

Interface IMessaging
Description Sends the message.
Response Model Synchronous and asynchronous
Pre-condition Valid instance of IMessaging interface is instantiated.
Post-condition Nil

Input Parameters

Input parameter specifies the type of messaging object and its details.

Output Parameters

Output parameters contain ErrorCode, and ErrorMessage if the operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to send SMS message to the specified phone number:

6.8. Messaging 205

Name Type Range Description
MessageType unicode string SMS

MMS
This specifies the message type.

To unicode string NA Multiple recipients can be passed using
MessageParam.

[BodyText] unicode string NA Body text for the message.
[Subject] unicode string NA Message subject. Not applicable for SMS.
[Attachment] unicode string FileName with

complete path.
Attachment Name (Full path). Valid for
MMS only. Additional attachments can be
passed using MessageParam.

[MimeType] unicode string NA Mime type of the attachment mentioned
above.

[MessageParam] map
[To]: List (uni-
code string)
[Cc]: List (uni-
code string)
[Bcc]: List (uni-
code string)
[AttachmentList]:
List (map)
[TemplateId]:
32 bit int
[LaunchEditor]: bool

AttachmentList
map elements
contains:
FileName:
unicode string
[MimeType]:
unicode string

FileName:
FileName with
complete path.

MimeType exam-
ple: image/gif, im-
age/jpeg and so on.
MimeType is
searched in system
for the given file
name. It is used if
found or, user pro-
vided MimeType is
taken.

This parameter specifies the full details of
the message depending on its type. It adds
the body text as text attachment in case
of MMS. Template Id is the message id,
which is the template for new message.
Bcc is supported for email only. (Cur-
rently email is not supported in the service)

In case of template id, if the body text
of message is specified and exists for
the given template Id then both the body
text specified will be appended to the
template Id message body text and sent.

If Launch Editor Flag is set to ETrue then,
the Message Editor will be popped up over
the application expecting you to act, by de-
fault it is EFalse.

Table 6.166: Input parameters for Send

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.167: Output parameters for Send

Error code value Description
0 Success
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1007 No memory
1012 Item Not found

Table 6.168: Error codes

206 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Error messages Description
Messaging:Send:MessageType Type Invalid Specifies if the type of MessageType parameter is invalid.
Messaging:Send:MessageType Value
Incorrect

Specifies if the value of MessageType parameter is incorrect.

Messaging:Send:MessageType Missing Specifies if the MessageType parameter is missing.
Messaging:Send:To Type Invalid Specifies if the type of To parameter is invalid.
Messaging:Send:To Value Incorrect Specifies if the value of To parameter is incorrect.
Messaging:Send:To Missing Specifies if the To parameter is missing.
Messaging:Send:BodyText Type Invalid Specifies if the type of BodyText parameter is invalid.
Messaging:Send:Subject Type Invalid Specifies if the type of Subject parameter is invalid.
Messaging:Send:Attachment Type Invalid Specifies if the type of Attachment parameter is invalid.
Messaging:Send:Attachment Value
Incorrect

Specifies if the value of Attachment parameter is incorrect.

Messaging:Send:MimeType Type Invalid Specifies if the type of MimeType parameter is invalid.
Messaging:Send:MimeType Value Incorrect Specifies if the value of MimeType parameter is incorrect.
Messaging:Send:MessageParam Type Invalid Specifies if the type of MessageParam parameter is invalid.
Messaging:Send:TemplateId Type Invalid Specifies if the type of TemplateId parameter is invalid.
Messaging:Send:LaunchEditor Type Invalid Specifies if the type of LaunchEditor parameter is invalid.
Messaging:Send:To Type Invalid Specifies if the type of To parameter is invalid.
Messaging:Send:To List Element Type
Invalid

Specifies if the type of element of To List parameter is invalid.

Messaging:Send:To List Element Value
Incorrect

Specifies if the value of element of To List parameter is incorrect.

Messaging:Send:Cc Type Invalid Specifies if the type of Cc parameter is invalid.
Messaging:Send:Cc List Element Type
Invalid

Specifies if the type of element of Cc List parameter is invalid.

Messaging:Send:Cc List Element Value
Incorrect

Specifies if the value of element of Cc List parameter is incorrect.

Messaging:Send:Bcc Type Invalid Specifies if the type of Bcc parameter is invalid.
Messaging:Send:Bcc List Element Type
Invalid

Specifies if the type of element of Bcc List parameter is invalid.

Messaging:Send:Bcc List Element Value
Incorrect

Specifies if the value of element of Bcc List parameter is incorrect.

Messaging:Send:AttachmentList Type
Invalid

Specifies if the type of AttachmentList parameter is invalid.

Messaging:Send:AttachmentList Element
Type Invalid

Specifies if the type of element of AttachmentList parameter is invalid.

Messaging:Send:FileName Type Invalid Specifies if the type of FileName parameter is invalid.
Messaging:Send:FileName Value Incorrect Specifies if the value FileName parameter is incorrect.
Messaging:Send:MimeType Type Invalid Specifies if the type of MimeType parameter is invalid.
Messaging:Send:MimeType Value Incorrect Specifies if the value MimeType parameter is incorrect.

Table 6.169: Error messages

6.8. Messaging 207

import scriptext

messaging_handle = scriptext.load(’Service.Messaging’, ’IMessaging’)

try:
messaging_handle.call(’Send’, {’MessageType’: u’SMS’, ’To’: u’12345678’,

’BodyText’: u’Hi’})
except scriptext.ScriptextError, err:

print "Error sending SMS : ", err
else:

print "SMS sent successfully"

6.8.3 RegisterNotification

RegisterNotification method registers the widget to receive notifications of new incoming messages.
For each new message, the method returns the header information of that message. It is available only in
asynchronous mode.

The following is an example for using RegisterNotification:

Asynchronous

sms_id = messaging_handle.call(’RegisterNotification’, {’Type’: u’NewMessage’},
callback=new_sms_callback)

where, new_sms_callback is a user defined callback function.

The following table summarizes the specification of RegisterNotification:

Interface IMessaging
Description Registers for getting notification for new messages.
Response Model Asynchronous
Pre-condition Valid instance of IMessaging interface is instantiated.
Post-condition Nil

Input Parameters

Input parameter specifies the request for notification of new messages. The object must contain the
NotificationType property (unicode string), and this property must contain the value NewMessage.

Name Type Range Description
Type unicode string NewMessage Performs operation based on the specified content types.

Table 6.170: Input parameters for RegisterNotification

Output Parameters

Output parameters contain the requested information. They also contain ErrorCode, and ErrorMessage if
the operation fails.

Errors

The following table lists the error codes and their values:

208 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range (Mes-
sageType:
string)

Description

ReturnValue map:
MessageType:
string
Sender: string
Subject: string
Time: Time
Priority: string
Attachment: bool
Unread: bool
MessageId: 32 bit
int

MessageType:

SMS
MMS
Unknown

Priority:
Low
Medium
High

It contains the list of message header fields.

SMS does not support subject, so it returns first few char-
acters of body text.

ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.171: Output parameters for RegisterNotification

Error code value Description
0 Success
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1010 Entry exists

Table 6.172: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Messaging:RegisterNotification:Type Type
Invalid

Specifies if the type of Type parameter is invalid.

Messaging:RegisterNotification:Type Value
Incorrect

Specifies if the value of Type parameter is incor-
rect.

Messaging:RegisterNotification:Type
Missing

Specifies if the Type parameter is missing.

Messaging:RegisterNotification:Synchronous
Operation not supported

Specifies if RegisterNotification is
called synchronously.

Table 6.173: Error messages

Example

The following sample code illustrates how to register for a new message notification, send a SMS and then cancel
the notification request, asynchronously:

6.8. Messaging 209

import scriptext
import e32

lock = e32.Ao_lock()
messaging_handle = scriptext.load(’Service.Messaging’, ’IMessaging’)

def new_sms_callback(trans_id, event_id, output_params):
if trans_id == sms_id and event_id == scriptext.EventCompleted:

print "SMS received from" + output_params[’ReturnValue’][’Sender’])
else:

print "Error in callback"
Cancel notification request
messaging_handle.call(’CancelNotification’, {’Type’: u’NewMessage’})
lock.signal()

The callback ’new_sms_callback’ will be called when a sms is received
sms_id = messaging_handle.call(’RegisterNotification’, {’Type’: u’NewMessage’},

callback=new_sms_callback)

Send SMS to self so that the notification callback is hit
messaging_handle.call(’Send’, {’MessageType’: u’SMS’, ’To’: u’12345678’,

’BodyText’: u’Hi self’})
lock.wait()

6.8.4 CancelNotification

CancelNotification method cancels the registration for notification of new messages. It is available only
in synchronous mode.

The following is an example for using CancelNotification:

Synchronous

messaging_handle.call(’CancelNotification’,{’Type’: u’NewMessage’})

The following table summarizes the specification of CancelNotification:

Interface IMessaging
Description Cancels registration for notification of new messages.
Response Model Synchronous
Pre-condition Valid instance of IMessaging interface is instantiated.
Post-condition Stop getting new message notifications.

Input Parameters

Input parameter specifies the request for canceling notification of new messages. This must contain the
Notification Type, and this property must contain the value NewMessage.

Name Type Range Description
Type unicode string NewMessage Performs operation based on the specified content types.

Table 6.174: Input parameters for CancelNotification

Output Parameters

210 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Output parameters contain ErrorCode, and ErrorMessage if the operation fails.

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.175: Output parameters for CancelNotification

Errors

The following table lists the error codes and their values:

Error code value Description
0 Success
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument

Table 6.176: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Messaging:CancelNotification:Type Type
Invalid

Specifies if the type of Type parameter is invalid.

Messaging:CancelNotification:Type Value
Incorrect

Specifies if the value of Type parameter is incor-
rect.

Messaging:CancelNotification:Type Missing Specifies if the Type parameter is missing.
Messaging:CancelNotification:Asynchronous
Operation not supported

Specifies if CancelNotification is called
asynchronously.

Table 6.177: Error messages

Example

The following sample code illustrates how to cancel a notification:

6.8. Messaging 211

import scriptext
import e32

lock = e32.Ao_lock()
messaging_handle = scriptext.load(’Service.Messaging’, ’IMessaging’)

def new_sms_callback(trans_id, event_id, output_params):
if trans_id == sms_id and event_id == scriptext.EventCompleted:

print "SMS received from" + output_params[’ReturnValue’][’Sender’])
else:

print "Error in callback"
Cancel notification request
messaging_handle.call(’CancelNotification’, {’Type’: u’NewMessage’})
lock.signal()

The callback ’new_sms_callback’ will be called when a sms is received
sms_id = messaging_handle.call(’RegisterNotification’, {’Type’: u’NewMessage’},

callback=new_sms_callback)

Send SMS to self so that the notification callback is hit
messaging_handle.call(’Send’, {’MessageType’: u’SMS’, ’To’: u’12345678’,

’BodyText’: u’Hi self’})
lock.wait()

6.8.5 ChangeStatus

ChangeStatus method changes the read status of a message. The status can be Read, Unread, Replied,
or Forwarded. It is available only in synchronous mode.

The following is an example for using ChangeStatus:

Synchronous

messaging_handle.call(’ChangeStatus’, {’MessageId’: message_id, ’Status’: u’Unread’})

The following table summarizes the specification of ChangeStatus:

Interface IMessaging
Description Sets a given value for the given flag.
Response Model Synchronous
Pre-condition Valid instance of IMessaging interface is instantiated.
Post-condition Message status changed to new status.

Input Parameters

Input parameter specifies the message ID, and message status to be set.

Output Parameters

Output parameters contain ErrorCode, and ErrorMessage if the operation fails.

Errors

The following table lists the error codes and their values:

212 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range Description
MessageId 32 bit int NA Message Id
Status unicode string Read

Unread
Replied
Forwarded

Message status to be set. Replied and Forwarded
are applicable for email type of messages.

Table 6.178: Input parameters for ChangeStatus

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.179: Output parameters for ChangeStatus

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to set SMS status as Unread:

import scriptext
import appuifw

messaging_handle = scriptext.load(’Service.Messaging’, ’IMessaging’)

sms_iter = messaging_handle.call(’GetList’, {’Type’: u’Inbox’})
id_list = []
body_list = []
for sms_dict in sms_iter:

if sms_dict[’MessageType’] == ’SMS’:
id_list.append(sms_dict[’MessageId’])
body_list.append(sms_dict[’BodyText’])

message_index = appuifw.selection_list(body_list)
try:

messaging_handle.call(’ChangeStatus’, {’MessageId’: id_list[message_index],
’Status’: u’Unread’})

except scriptext.ScriptextError, err:
print "Error setting message status to Unread"

else:
print "Message status changed to Unread"

Error code value Description
0 Success
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1012 Item Not found

Table 6.180: Error codes

6.8. Messaging 213

Error messages Description
Messaging:ChangeStatus:MessageId Type
Invalid

Specifies if the type of MessageId parameter is invalid.

Messaging:ChangeStatus:MessageId
Value Incorrect

Specifies if the value of MessageId parameter is incor-
rect.

Messaging:ChangeStatus:MessageId
Missing

Specifies if the MessageId parameter is missing.

Messaging:ChangeStatus:Status Type
Invalid

Specifies if the type of Status parameter is incorrect.

Messaging:ChangeStatus:Status Value
Incorrect

Specifies if the range of Status parameter is exceeded.

Messaging:ChangeStatus:Status Missing Specifies if the Status parameter is missing.
Messaging:ChangeStatus:Asynchronous
Operation not supported

Specifies if ChangeStatus is called asynchronously.

Table 6.181: Error messages

6.8.6 Delete

Delete method is used to delete a message. It is available only in synchronous mode.

The following is an example for using Delete:

Synchronous

messaging_handle.call(’Delete’, {’MessageId’: message_id})

The following table summarizes the specification of Delete:

Interface IMessaging
Description Delete deletes the message.
Response Model Synchronous
Pre-condition Valid instance of IMessaging interface is instantiated.
Post-condition Message no more exists in database.

Input Parameters

Input parameter specifies the MessageId of the message to delete.

Name Type Range Description
MessageId 32 bit int MessageId Deletes message with the specified message ID.

Table 6.182: Input parameters for Delete

Output Parameters

Output parameters contain ErrorCode, and ErrorMessage if the operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

214 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range (Type: string) Description
ErrorCode int NA Service specific error code on failure of the operation.
ErrorMessage string NA Error description in Engineering English.

Table 6.183: Output parameters for Delete

Error code value Description
0 Success
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1012 Item Not found

Table 6.184: Error codes

The following table lists the error messages and their description:

Error messages Description
Messaging:Delete:MessageId Type
Invalid

Specifies if the type of MessageId parameter is mis-
matched.

Messaging:Delete:MessageId Value
Incorrect

Specifies if the value of MessageId parameter is nega-
tive.

Messaging:Delete:MessageId Missing Specifies if the MessageId parameter is missing.
Messaging:Delete:Asynchronous
Operation not supported

Specifies if Delete is called asynchronously.

Table 6.185: Error messages

Example

The following sample code illustrates how to delete a particular SMS:

6.8. Messaging 215

import scriptext
import appuifw
import e32

lock = e32.Ao_lock()
sms_iter = None
messaging_handle = scriptext.load(’Service.Messaging’, ’IMessaging’)

sms_iter = messaging_handle.call(’GetList’, {’Type’: u’Inbox’})

id_list = []
body_list = []
for sms_dict in sms_iter:

if sms_dict[’MessageType’] == ’SMS’:
id_list.append(sms_dict[’MessageId’])
body_list.append(sms_dict[’BodyText’])

Select the message to be deleted
message_index = appuifw.selection_list(body_list)
try:

messaging_handle.call(’Delete’, {’MessageId’: id_list[message_index]})
except scriptext.ScriptextError, err:

print "Error deleting SMS :", err
else:

print "Message deleted successfully"

216 Chapter 6. scriptext - Platform Service API Usage from Python runtime

6.9 Media Management

The Media Management service allows Python applications to retrieve information from the media files stored in
the media gallery of an S60 device.

It is used to access information about different types of media including music, sounds, images, video, and
streaming.

You can create applications like custom photo viewer or audio player that displays or, otherwise incorporate
media, using the Media Management service.

The following sample code is used to load the provider:

import scriptext
msg_handle = scriptext.load(’Service.MediaManagement’, ’IDataSource’)

The following table summarizes the Media Management Interface:

Service provider Service.MediaManagement
Supported interfaces IDataSource

The following table lists the services available in Media Management:

Services Description
Getlist 6.9.1 Retrieves information from a given service or data source on S60 device.

6.9.1 GetList

GetList takes a set of input parameters that define filter and sort criteria, and retrieves the metadata of media
files based on media and metadata type.

GetList implements the main functionality of Media Management service. It is available only in asynchronous
mode.

The following is an example for using GetList:

media_handle.call(’GetList’[{’Type’: string, ’Filter’: map, ’Sort’: map},
callback=callback_function])

where, callback_function is user defined function.

The following table summarizes the specification of GetList:

Interface IDataSource
Description Retrieves the metadata of media files based on media and metadata type.
Response Model Asynchronous
Pre-condition Valid service object representing the provider and interface.
Post-condition Nil

Input Parameters

6.9. Media Management 217

Input parameter specifies the Type, the metadata of media file to fetch and the criteria for sorting. Input
parameter has three properties: Type, Filter, and Sort.

Name Type Range Description
Type unicode string Fileinfo Operation performed on the specified type.

This field is mandatory.
Filter map For more informa-

tion, refer table 6.187
It specifies the type of media file to fetch, and key for filtering
the media files with their range. FileType field is mandatory.

If key is specified, then it is mandatory to specify the range.
You must only mention the StartRange for
keys, where EndRange is not applicable.

For example, if key is FileName then, mention the desired file
name in the StartRange and leaving the EndRange empty.

[Sort] map For more informa-
tion, refer table 6.188

It specifies the key name on which the result-
ing output will be sorted and can be one of
the values mentioned in the Value column.
By default, sorting is done in ascending order based on
the FileName.

Table 6.186: Input parameters for GetList

Output Parameters

Output contains ReturnValue. It also contains ErrorCode and an ErrorMessage if the operation fails.

Errors

The following table lists the error codes and their values:

Error Messages

The following table lists the error messages and their description:

Example

The following sample code illustrates how to get a list of all MP3s:

218 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Key Value Type
FileType Music

Sound
Image
Video
StreamingURL

unicode string

[Key] FileName
FileExtension
Drive
FileSize
FileDate
MimeType
FileNameAndPath
SongName
Artist
Album
Genre
TrackNumber
Composer
LinkFirstURL

unicode string

[StartRange] Valid for all keys unicode string
[EndRange] Valid for the following keys:

FileSize(bytes)
FileDate(YYYYMMDD:HHMMSS)

For example, 20070303:010101

unicode string

Table 6.187: Media file type

Key Value Type
[Key] FileName

FileExtension
Drive
FileSize
FileDate
MimeType
FileNameAndPath
SongName
Artist
Album
Genre
TrackNumber
Composer
LinkFirstURL

unicode string

[Order] Ascending or descending unicode string

Table 6.188: Key name

6.9. Media Management 219

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when the

operation fails.
ErrorMessage string NA Error Description in Engineering English.
ReturnValue Iterable maps Type: string

FileName: string
FileExtension: string
Drive: string
FileSize: int
FileDate: datetime
MediaType: int
FileNameAndPath:
string
SongName: string
Artist: string
Album: string
Genre: string
TrackNumber: string
Composer: string
MimeType: string
LinkFirstURL: string

The output is an iterable which on
each invocation returns a map, which
will be filled by the service provider.

Map stores the key names and its values.
The key-value pair that is, Property name and
Value in the output map depends upon the file type
in the input -Filter map.

Table 6.189: Output parameters for GetList

Error code value Description
1002 Bad argument type
1003 Missing argument

Table 6.190: Error codes

Error messages Description
MediaMgmt:GetList:Server
busy

Indicates provider is busy in processing another
request.

MediaMgmt:GetList:Type
Missing

Indicates Type parameter is missing.

MediaMgmt:GetList:Type
not supported(should be
FileInfo)

Indicates that the content type is incorrect.

MediaMgmt:GetList:Filter
parameter missing

Indicates that the Filter parameter which is
mandatory is missing.

MediaMgmt:GetList:Filter
parameter type mismatch

Indicates that the type of Filter parameter is incor-
rect.

MediaMgmt:GetList:Sort
parameter type mismatch

Indicates that the type of Sort parameter is incor-
rect.

MediaMgmt:GetList:FileType
missing in Filter map

Indicates that FileType parameter is not present
in Filter map or, FileType parameter type is in-
correct.

Table 6.191: Error messages

220 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext
import e32

def media_callback(trans_id, event_id, output_params):
if trans_id == media_trans_id:

if event_id == scriptext.EventCompleted:
song_list = []
for item in output_params[’ReturnValue’]:

song_list.append(item[’FileName’])
print "List of files retrieved:", song_list

else:
print "Event ID was not EventCompleted"

else:
print "Invalid Transaction ID"

lock.signal()

lock = e32.Ao_lock()
media_handle = scriptext.load(’Service.MediaManagement’, ’IDataSource’)

Request for the list of mp3s in ascending order
media_trans_id = media_handle.call(’GetList’, {’Type’: u’FileInfo’,

’Filter’: {’FileType’: u’Music’,
’Key’: u’FileExtension’,
’StartRange’: u’.mp3’},

’Sort’: {’Key’: u’FileName’,
’Order’: u’Ascending’}},

callback=media_callback)

lock.wait()

6.9.2 Key Values

File Types

Key Description Supported Metadata
Music Retrieves media files of Music type. Artist, SongName, TrackNumber, Album, Genre, Com-

poser, FileNameAndPath, FileName, FileExtension,
Drive, MimeType, FileSize, FileDate.

Sound Retrieves media files of Sound type. FileNameAndPath, FileName, FileExtension, Drive,
MimeType, FileSize, FileDate.

Image Retrieves media files of Image type. FileNameAndPath, FileName, FileExtension, Drive,
MimeType, FileSize, FileDate.

Video Retrieves media files of Video type. FileNameAndPath, FileName, FileExtension, Drive,
MimeType, FileSize, FileDate.

StreamingUrl Retrieves media files of Link type. LinkFirstURL, FileNameAndPath, FileName, FileExten-
sion, Drive, MimeType, FileSize ,FileDate.

Keys

Output maps for various values of FileType

6.9. Media Management 221

Key Description
Type Always a media file.
FileName Filter/sort the result as per file name.
FileExtension Filter/sort the result based on file extension.
Drive Filter/sort the result as per file drive.
FileSize Filter/sort the result as per file size.
FileData Filter/sort the result as per file date.
MediaType Filter/sort the result as per file type.

Value: Description
0: Unknown media type
1: Music media type
2: Sound media type
3: Image media type
4: Video media type
5: Streaming URLs

FileNameAndPath Filter/sort the result as per full path of file.
SongName Filter/sort the result as per song name.
Artist Filter/sort the result as per artist name.
Album Filter/sort the result as per album name.
MimeType Filter/Sort the result based on mime type.

6.10 Sensors

The Sensor service enables access to the various methods provided by S60 sensor channel subsystem. provides
abstraction of various physical sensors that exist in the device. You can map data from one physical sensor to
several channels. These include the following:

• Finding available sensor channels.

• Registering to receive notification on data from various sensors.

• Getting channel properties.

The following sample code is used to load the provider:

import scriptext
sensor_handle = scriptext.load(’Service.Sensor’, ’ISensor’)

The following table summarizes the Sensor Interface:

The following table lists the services available in Sensor:

6.10.1 FindSensorChannel

FindSensorChannel performs a search operation for sensor channels in a S60 device based on the specified
search criteria.

The client application specifies the search parameters and queries to the Sensor services, which returns a list
containing channel information matching the search parameters.

The following is an example for using FindSensorChannel:

sensor_handle.call(’FindSensorChannel’, {’SearchCriterion’: u’Orientation’})

222 Chapter 6. scriptext - Platform Service API Usage from Python runtime

FileType Output map
Image Key: Value

Type: string
FileName: string
FileExtension: string
Drive: string
FileSize: int
FileDate: datetime
FileNameAndPath: string
MimeType: string

Sound Key: Value
Type: string
FileName: string
FileExtension: string
Drive: string
FileSize: int
FileDate: datetime
FileNameAndPath: string
MimeType: string

Video Key: Value
Type: string
FileName: string
FileExtension: string
Drive: string
FileSize: int
FileDate: datetime
FileNameAndPath: string
MimeType: string

Music Key: Value
Type: string
FileName: string
FileExtension: string
Drive: string
FileSize: int
FileDate: datetime
MimeType: string
FileNameAndPath: string
SongName: string
Artist: string
Album: string
TrackNumber: string
Genre: string
Composer: string

StreamingUrl Key: Value
Type: string
FileName: string
FileExtension: string
Drive: string
FileSize: int
FileDate: datetime
FileNameAndPath: string
LinkFirstURL: string
MimeType: string

6.10. Sensors 223

Service provider Service.Sensor
Supported interfaces ISensor

Services Description
FindSensorChannel 6.10.1 Searches for sensor channels in the device based on a given search criteria.
RegisterForNotification 6.10.2 Registers for notification with a sensor channel to receive channel data.
GetChannelProperty 6.10.3 Gets the channel property of the specified sensor channel.

The following table summarizes the specification of FindSensorChannel:

Interface ISensor
Description Performs a search operation for sensor channels in an S60 device based on the specified search criteria.
Response Model Synchronous
Pre-condition ISensor interface is loaded.
Post-condition Receives list of sensor channel which can be used to open channels.

224 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Input Parameters

Input parameter is a string that specifies the search criteria for performing the search operation.

Name Type Range Description
SearchCriterion unicode string All

AccelerometerAxis
AccelerometerDoubleTapping
Orientation
Rotation

Specifies the search criterion.

You can select from the list pro-
vided and specify it as an argument.

Table 6.192: Input parameters for FindSensorChannel

Output Parameters

Add API which misses out on some mandatory input Output contains ReturnValue. It also contains
ErrorCode and an ErrorMessage if the operation fails. ReturnValue is an array of objects, which
contains the sensor channel information requested by FindSensorChannel.

Name Type Range Description
ErrorCode 32 bit int NA Contains the SAPI specific error code

when the operation fails.
ErrorMessage string NA Error Description in Engineering En-

glish.
ReturnValue Lists of maps. Each map in this

document is referred as Chan-
nelInfoMap. For more infor-
mation, refer table ChannelIn-
foMap 6.194

ContextType
0: Not defined
1: Ambient sensor. For exam-
ple, to measure pressure.
2: Gives informa-
tion on device itself.
3: Measures user ini-
tiated stimulus.

Quantity
0: Not defined
10: Acceleration
11: Tapping
12: Orientation
13: Rotation
14: Magnetic
15: Tilt

ReturnValue consists of a list of
maps, each map of which holds the key-
value pair for each of sensor channel
that satisfy the search criterion.

Table 6.193: Output parameters for FindSensorChannel

6.10. Sensors 225

Type Name Description
32 bit int ChannelId Unique ID representing the channel.
32 bit int ContextType Defines the context where the channel is available.
32 bit int Quantity Defines the quantity being sensed.
32 bit int ChannelType Defines a unique type ID for each channel.
string Location Location of the sensor related to channel.
string VendorId Vendor ID of the sensor related to channel.
32 bit int DataItemSize Data item size delivered in the channel.
32 bit int ChannelDataTypeId Unique data type identifier for the data being sensed.

Table 6.194: ChannelInfoMap

Errors

The following table lists the error codes and their values:

Error code value Description
0 Success
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument

Table 6.195: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Sensors:FindSensorChannel:
Search Criterion Missing

Indicates that channel search criterion is missing from the input
parameter list.

Sensors:FindSensorChannel:
Invalid Search Criterion

Indicates that the channel search criterion is invalid and does
not fall within the specified range of search criterion strings.

Sensors:FindSensorChannel:
Channel search param type
invalid

Indicates that the datatype of the parameter passed for the chan-
nel search criterion is invalid.

Table 6.196: Error messages

Example

The following sample code illustrates how to query a list of channel information matching the search parameters:

226 Chapter 6. scriptext - Platform Service API Usage from Python runtime

try:
result = sensor_handle.call(’FindSensorChannel’, {’SearchCriterion’: u’Orientation’})
count_items = len(result)
print count_items
print "ChannelId : ", result[0][’ChannelId’]
print "ContextType : ", result[0][’ContextType’]
print "Quantity : ", result[0][’Quantity’]
print "ChannelType : ", result[0][’ChannelType’]
print "Location : ", result[0][’Location’]
print "VendorId : ", result[0][’VendorId’]
print "DataItemSize : ", result[0][’DataItemSize’]
print "ChannelDataTypeId : ", result[0][’ChannelDataTypeId’]

except scriptext.ScriptextError, err:
print "Error performing the operation : ", err

6.10.2 RegisterForNotification

RegisterForNotification is used to register for notification with a sensor channel to receive channel
data or channel property changes. This is associated with the transaction ID of an asynchronous request.
These notifications are continuous in nature and are stopped by invoking the Cancel command on the retrieved
transaction ID.

The following is an example for using RegisterForNotification:

Asynchronous

sensor_handle.call(’RegisterForNotification’,
{’ListeningType’: u’ChannelData’,
’ChannelInfoMap’: {’ChannelId’: result[’ChannelId’],

’ContextType’: result[’ContextType’],
’Quantity’: result[’Quantity’],
’ChannelType’: result[’ChannelType’],
’Location’: result[’Location’],
’VendorId’: result[’VendorId’],
’DataItemSize’: result[’DataItemSize’],
’ChannelDataTypeId’: result[’ChannelDataTypeId’]}},

callback=sensor_callback)

where, sensor_callback is the user defined callback function.

The following table summarizes the specification of RegisterForNotification:

Interface ISensor
Description Registers for notification with a sensor channel to receive channel data.
Response Model Asynchronous
Pre-condition ISensor interface is loaded.
Post-condition Client application receives an array of channel information to open channels.

6.10. Sensors 227

Input Parameters

Input parameter is a set of arguments that specifies the Listening Type and the ChannelInfoMap.

Name Type Range Description
ListeningType unicode string Range for

ListeningType
ChannelData: Data
listening

Determines the type of notification that needs to be
registered for.

ChannelInfoMap map as mentioned in
FindSensorChannel.
Refer ChannelInfoMap 6.194

NA The map is obtained by invoking
FindSensorChannel.

Table 6.197: Input parameters for RegisterForNotification

228 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Output Parameters

Output contains ReturnValue. It also contains ErrorCode and an ErrorMessage if the operation fails.
ReturnValue is an object, which contains output parameter details depending on the listening type and
channel selected.

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when

the operation fails.
ErrorMessage string NA Error Description in Engineering English.
ReturnValue The output consists of one of the fol-

lowing maps depending on the lis-
tening type and channel selected:

For listening type - ChannelData
and channel information correspond-
ing to AccelerometerAxis:
Type: Name
string: DataType
Time: TimeStamp
32 bit int: XAxisData
32 bit int: YAxisData
32 bit int: ZAxisData

For listening type - ChannelData and
channel information corresponding to
AccelerometerDoubleTapping:
Type: Name
string: DataType
Time: TimeStamp
32 bit int: DeviceDirection

For listening type - ChannelData
and channel information corre-
sponding to Orientation:
Type: Name
string: DataType
Time: TimeStamp
string: DeviceOrientation

For listening type - ChannelData and
channel info corresponding to Rotation:
Type: Name
string: DataType
Time: TimeStamp
32 bit int: XRotation
32 bit int: YRotation
32 bit int: ZRotation

DataType for
AccelerometerAxis
is AxisData

DataType for
AccelerometerDoubleTapping
is DoubleTappingData

DataType for Orientation
is OrientationData
Range for
DeviceOrientation:
Undefined
DisplayUp
DisplayDown
DisplayLeftUp
DisplayRightUp
DisplayUpwards
DisplayDownwards

DataType for Rotation is
RotationData

A map is returned in case notification is re-
ceived.

Table 6.198: Output parameters for RegisterForNotification

6.10. Sensors 229

Errors

The following table lists the error codes and their values:

Error code value Description
0 Success
1000 Invalid service argument
1002 Bad argument type
1003 Missing argument
1005 Service in use

Table 6.199: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Sensors:RegisterForNotification:
Listening type missing

Indicates that the listening type for receiving notification
is missing.

Sensors:RegisterForNotification:
Listening type is invalid

Indicates that the datatype of Listening type is invalid.

Sensors:RegisterForNotification:
ChannelInfoMap missing

Indicates that the channel information map is not pro-
vided as input parameter.

Sensors:RegisterForNotification:
Incomplete input param list

Indicates that the input parameter list is incomplete.

Sensors:RegisterForNotification:
Listening type is out of allowed
range

Indicates that the Listening type falls outside the allowed
range of listening types.

Sensors:RegisterForNotification:
Callback missing

Indicates that the callback function is missing.

Sensors:RegisterForNotification:
Notification is already registered
on this channel

Indicates that the notification is already registered from
the same user on the same channel.

Table 6.200: Error messages

230 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Example

The following sample code illustrates how to receive notification for channel data, on registering:

import scriptext
import e32

Using e32.Ao_lock() to make main function wait till callback is hit
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def register_operation(trans_id, event_id, input_params):

if trans_id != scriptext.EventCompleted:
print "DataType: ", input_params["ReturnValue"]["DataType"]
print "TimeStamp: ", input_params["ReturnValue"]["TimeStamp"]
print "X-Axis Rotation: ", input_params["ReturnValue"]["XRotation"]
print "Y-Axis Rotation: ", input_params["ReturnValue"]["YRotation"]
print "Z-Axis Rotation: ", input_params["ReturnValue"]["ZRotation"]

6.10. Sensors 231

6.10.3 GetChannelProperty

GetChannelProperty is used to get the channel property of the specified sensor channel.

The following is an example for using GetChannelProperty:

sensor_handle.call(’GetChannelProperty’,
{’ChannelInfoMap’:{’ChannelId’: result[’ChannelId’],

’ContextType’: result[’ContextType’],
’Quantity’: result[’Quantity’],
’ChannelType’: result[’ChannelType’],
’Location’: result[’Location’],
’VendorId’: result[’VendorId’],
’DataItemSize’: result[’DataItemSize’],
’ChannelDataTypeId’: result[’ChannelDataTypeId’]},

’propertyId’: u’DataRate’})

The following table summarizes the specification of GetChannelProperty:

Interface ISensor
Description Gets the specified property of a sensor channel.
Response Model Synchronous
Pre-condition ISensor interface is loaded.
Post-condition Client application receives the requested property details.

Input Parameters

Input parameters define the ChannelInfoMap and PropertyId.

Name Type Range Description
ChannelInfoMap map as mentioned in

FindSensorChannel.
Refer ChannelIn-
foMap 6.194

NA The map is ob-
tained by invoking
FindSensorChannel.

PropertyId unicode string Range for
PropertyId:
DataRate
Availability
MeasureRange
ChannelDataFormat

ChannelAccuracy
ChannelScale
ScaledRange
ChannelUnit
SensorModel
ConnectionType
Description

The property ID string for
which the property is being
queried.

Table 6.201: Input parameters for GetChannelProperty

Output Parameters

Output contains ReturnValue. It also contains ErrorCode and an ErrorMessage if the operation fails.
ReturnValue contains the requested channel property.

232 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error

code when the operation fails.
ErrorMessage string NA Error Description in Engineering

English.
ReturnValue Channel property map:

Type: Name
string: PropertyId
32 bit int:
PropertyDataType
32 bit Integer:
ItemIndex
bool: ReadOnly
32 bit int/ double/ string:
PropertyValue

The channel property
can either be of type in-
teger, double, or string.

Range for
PropertyDataType:

0: For Integer datatype
1: For Double datatype
2: For String datatype

ReturnValue contains a map of
key-value pair for channel property.

Table 6.202: Output parameters for GetChannelProperty

Errors

The following table lists the error codes and their values:

Error code value Description
0 Success
1002 Bad argument type
1003 Missing argument
1012 Item not found

Table 6.203: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
Sensors:GetChannelProperty: Property
id missing

Indicates that the property ID input parameter is missing.

Sensors:GetChannelProperty: Invalid
property id

Indicates that the input property ID is invalid and does
not fall within the specified range of property ID strings.

Sensors:GetChannelProperty:
ChannelInfoMap missing

Indicates that the channel information map is not pro-
vided as input parameter.

Sensors:GetChannelProperty: Channel
property not supported

Indicates that the channel property is not supported hence
no value is returned.

Sensors:GetChannelProperty:
Incomplete input param list

Indicates that the input param list is incomplete.

Table 6.204: Error messages

Example

The following sample code illustrates how to get the specified property of sensor channel:

6.10. Sensors 233

try:
result = sensor_handle.call(’FindSensorChannel’,

{’SearchCriterion’: u’Rotation’})

ChannelId = result[0][’ChannelId’]
ContextType = result[0][’ContextType’]
Quantity = result[0][’Quantity’]
ChannelType = result[0][’ChannelType’]
Location = result[0][’Location’]
VendorId = result[0][’VendorId’]
DataItemSize = result[0][’DataItemSize’]
ChannelDataTypeId = result[0][’ChannelDataTypeId’]

result = sensor_handle.call(’GetChannelProperty’,
{’ChannelInfoMap’:{’ChannelId’: ChannelId,

’ContextType’: ContextType,
’Quantity’: Quantity,
’ChannelType’: ChannelType,
’Location’: Location,
’VendorId’: VendorId,
’DataItemSize’: DataItemSize,
’ChannelDataTypeId’: ChannelDataTypeId},
’PropertyId’: u’DataRate’})

print "Property Id: ", result["PropertyId"]
print "PropertyDataType: ", result["PropertyDataType"]
print "ItemIndex: ", result["ItemIndex"]
print "ReadOnly: ", result["ReadOnly"]
print "PropertyValue: ",result["PropertyValue"]

except scriptext.ScriptextError, err:
print "Error performing the operation : ", err

234 Chapter 6. scriptext - Platform Service API Usage from Python runtime

6.11 Sys Info

The SysInfo service provides Read or Write access to system information of a terminal. SysInfo service allows
registering to system events identified by System Attributes (SAs). Some of the SAs are modifiable and supports
notifications.

An Object with an entity and a key represents a System Attribute. An entity broadly represents a component in
the device. A key is an attribute of an entity. For example, battery is an entity where, ChargingStatus,
BatteryStrength, and BatteryLevel are the Keys of the entity.

The following sample code is used to load the provider:

import scriptext
msg_handle = scriptext.load(’Service.SysInfo’, ’ISysInfo’)

The following table summarizes the SysInfo Interface:

Service provider Service.SysInfo
Supported interfaces ISysInfo

The following table lists the services available in SysInfo:

Services Description
GetInfo 6.11.1 Reads system attributes value.
SetInfo 6.11.2 Modifies system attributes value.
GetNotification 6.11.3 Register for notifications.

6.11.1 GetInfo

GetInfo retrieves the value of a system attribute. It can be used in both synchronous and asynchronous mode.

The following are the examples for using GetInfo:

Synchronous

self.sysinfo_handle.call("GetInfo", {"Entity": u"General",
"Key": u"VibraActive",
"SystemData": {"Status": 1}})

Asynchronous

event_id = sysinfo_handle.call("GetInfo", {"Entity": u"Network",
"Key": u"LocationArea"},

callback=print_location_area)

where, print_location_area is user defined function.

The following table summarizes the specification of GetInfo:

6.11. Sys Info 235

Interface ISysinfo
Description Retrieves the value of a system attribute.
Response Model Synchronous and asynchronous
Pre-condition ISysInfo Interface is loaded.
Post-condition Returns an object on success.

Input Parameters

Input parameter specifies the Entity of system attribute information returned.

Name Type Range Description
Entity unicode string For complete list of sup-

ported Entities, refer Key
Values 6.11.4 section.

Entity of system attribute.
For example, Battery
Network and so on.

Key unicode string For complete list of sup-
ported Keys, refer Key Val-
ues 6.11.4 section.

Key of system attribute. For
example, BatteryStrenth
HomeNetwork and so on.

[SystemData] map DriveInfo
Drive: unicode string

This is an optional parameter from API
definition point of view. For some system
attributes, you need to specify input.

This map must contain one of the input
data specifiers defined in System Data.

For more information on input specifier re-
fer the section Key Values 6.11.4.

Table 6.205: Input parameters for GetInfo

236 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Output Parameters

Output parameter returns an object that contains the requested information. It also contains ErrorCode and an
ErrorMessage, if the operation fails.

Name Type Range Description
ErrorCode int NA Contains the SAPI

specific error code
when the operation
fails.

ErrorMessage string NA Error Description in
Engineering English.

ReturnValue map(System
Data)
Entity: string
Key: string

For complete range
of keys for the par-
ticular map, refer to
System Data in Key
Value section.

Output map always
contains Entity and
Key. Rest of the
elements in the
map depends on
requested system
attribute (Entity-
Key). It will be
one of the data
specifiers defined in
System Data.

On requesting drive
information using
system attribute (for
example: Memory,
DriveInfo),
ReturnValue
map will contain
Keys defined in
DriveInfo Map.

Table 6.206: Output parameters for GetInfo

Errors

The following table lists the error codes and their values:

Error code value Description
-304 General Error
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1010 Entry exists
1012 Item not found

Table 6.207: Error codes

6.11. Sys Info 237

Error Messages

The following table lists the error messages and their description:

Error messages Description
SysInfo:GetInfo:
Insufficient
Arguments to
process

At least two input arguments are expected to process GetInfo service
request.

SysInfo:GetInfo:
Entity:Input
Parameter Missing

Indicates mandatory parameter Entity is missing in the service request.

SysInfo:GetInfo:
Key:Input
Parameter Missing

Indicates mandatory parameter Key is missing in the service request.

SysInfo:GetInfo:
Incorrect
SystemData Type,
SystemData Must be
a Map

Indicates that either the optional parameter SystemData specified is
not a map or content of the map is inappropriate to process request.

SysInfo:GetInfo:
CallBack and
CmdOptions not
matching

Indicates that the situation where user specified callback and
CmdOptions is set to Synchronous and vice-versa.

Table 6.208: Error messages

238 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Example

The following sample code illustrates how to retrieve the current location area in synchronous mode:

import scriptext
import e32

Using e32.Ao_lock() so that the main function can wait
till the callback is hit.
lock = e32.Ao_lock()

Callback function will be called when the requested service is complete
def print_location_area(trans_id, event_id, input_params):

if event_id != scriptext.EventCompleted:
Check the event status

print "Error in retrieving required info"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message is: " + input_params["ReturnValue"]["ErrorMessage"]
else:

print "Current Location Area is: " + input_params["ReturnValue"]["Status"]

lock.signal()

Load sysinfo service
sysinfo_handle = scriptext.load("Service.SysInfo", "ISysInfo")

Make a request to query the required information
event_id = sysinfo_handle.call("GetInfo", {"Entity": u"Network", "Key": u"LocationArea"}, callback=print_location_area)

print "Waiting for the request to be processed!"
lock.wait()
print "Request complete!"

6.11.2 SetInfo

SetInfo modifies the value of a system attribute. It takes a set of input parameters that define entity and key of
SystemAttribute to modify the value of system attribute.

It is available in only synchronous mode.

The following is an example for using GetInfo:

Synchronous

sysinfo_handle.call("SetInfo", {"Entity": u"General",
"Key":u"VibraActive",
"SystemData" {"Status": 1}})

6.11. Sys Info 239

The following table summarizes the specification of GetInfo:

Interface ISysinfo
Description Modifies the value of a system attribute.
Response Model Synchronous
Pre-condition ISysInfo Interface is loaded.
Post-condition Changes the system attribute on success

Input Parameters

Input parameter specifies an entity and key of system attribute.

Name Type Range Description
Entity unicode string For complete list of sup-

ported Entities, refer Key
Values 6.11.4 section.

Entity of system at-
tribute. For exam-
ple, Connectivity
Display and so on.

Key unicode string For complete list of sup-
ported Keys, refer Key Val-
ues 6.11.4 section.

Key of system attribute.
For example, Bluetooth
Wallpaper and so on.

SystemData map Status information
Status: int

Wallpaper path
StringData: unicode
string

This map must contain one
of the input data specifiers
defined in System Data.

For more information on in-
put specifier refer the section
Key Values 6.11.4.

Table 6.209: Input parameters for SetInfo

Output Parameters

Output parameter contains ErrorCode and an ErrorMessage, if the operation fails.

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when the operation fails.
ErrorMessage string NA Error Description in Engineering English.

Table 6.210: Output parameters for GetInfo

240 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Errors

The following table lists the error codes and their values:

Error code value Description
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1011 Access denied
1012 Item not found
1014 General error
1017 Path not found

Table 6.211: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
SysInfo:SetInfo:
Insufficient Arguments to
process

At least two input arguments are expected to process
SetInfo service request.

SysInfo:SetInfo:
Entity:Input Parameter
Missing

Indicates mandatory parameter Entity is missing in the
service request.

SysInfo:SetInfo: Key:Input
Parameter Missing

Indicates mandatory parameter Key is missing in the ser-
vice request.

SysInfo:SetInfo: Incorrect
SystemData Type, SystemData
Must be a Map

Indicates that either the optional parameter
SystemData specified is not a map or content of
the map is inappropriate to process request.

SysInfo:SetInfo: SystemData
Argument Missing

Indicates that mandatory parameter SystemData is not
specified in input argument list.

SysInfo:SetInfo: ASync
Version Not Supported

This message is given when SetInfo is requested
by specifying callback or CmdOptions set to Asyn-
chronous request type.

Table 6.212: Error messages

6.11. Sys Info 241

Example

The following sample code illustrates how to set Vibra mode:

Synchronous example: Setting Vibra mode

import scriptext

Load sysinfo service
sysinfo_handle = scriptext.load(’Service.SysInfo’, ’ISysInfo’)

Make a request to set vibra mode
try:

sysinfo_handle.call("SetInfo", {"Entity": u"General", "Key": u"VibraActive", "SystemData": {"Status": 1}})
print "Request complete!"

except scriptext.ScriptextError:
print ’Error in servicing the request’

6.11.3 GetNotification

GetNotification method registers a callback function to receive notifications of system data. It takes a set
of input parameters that specifies entity and key of System Attribute.
It is available in only asynchronous mode.

The following is an example for using GetNotification:

Asynchronous

event_id = sysinfo_handle.call("GetNotification",
{"Entity": u"Battery", "Key": u"ChargingStatus"},
callback=sysinfo_callback)

where, sysinfo_callback is user defined function.

The following table summarizes the specification of GetNotification:

Interface ISysinfo
Description Registers a callback function for listening to notifications.
Response Model Asynchronous
Pre-condition ISysInfo Interface is loaded.
Post-condition Returns the generic parameter system data on success.

242 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Input Parameters

Input parameter specifies the Entity and Key of system attribute, and system data.

Name Type Range Description
Entity unicode string For com-

plete list of
supported
Entities,
refer Key
Values 6.11.4
section.

Entity of system attribute.
For example, Battery
Network and so on.

Key unicode string For complete
list of sup-
ported Keys,
refer Key
Values 6.11.4
section.

Key of system attribute. For
example, BatteryStrenth
CurrentNetwork and so on.

[SystemData] map Status in-
formation
Status: int

DriveInfo
Drive: uni-
code string
CriticalSpace:
int

This is an optional parameter from API
definition point of view. For some system
attributes, you need to specify input.

This map must contain one of the input
data specifiers defined in System Data.

For more information on input specifier
refer the section Key Values 6.11.4.

Here are some system attributes
for which status information
is used as input specifier.

DriveNumber and critical space
to be specified for drive crit-
ical memory notifications.

For example, Battery-
BatteryStrength (Thresh-
old Strength value).
Network- Signal (Threshold Signal
value).

Table 6.213: Input parameters for GetNotification

6.11. Sys Info 243

Output Parameters

Output parameter returns an object that contains the requested information. It also contains ErrorCode and an
ErrorMessage, if the operation fails.

Name Type Range Description
ErrorCode int NA Contains the SAPI specific error code when the operation fails.
ErrorMessage string NA Error Description in Engineering English.
ReturnValue map(System

Data)
Entity: string
Key: string

For complete range of keys
for the particular map, re-
fer to System Data in Key
Value section.

Output map always contains Entity and Key. Rest
of the elements in the map depends on requested
system attribute (Entity-Key). It will be one of
the data specifiers defined in System Data.

On requesting drive information using system attribute (for ex-
ample: Memory, DriveInfo), ReturnValue map will
contain Keys defined in DriveInfo Map.

Table 6.214: Output parameters for GetNotification

Errors

The following table lists the error codes and their values:

Error code value Description
1002 Bad argument type
1003 Missing argument
1006 Service not ready
1010 Entry exists
1012 Item not found

Table 6.215: Error codes

Error Messages

The following table lists the error messages and their description:

Error messages Description
SysInfo:GetNotification:
Insufficient Arguments to
process

At least two input arguments are expected to process
GetNotification service request.

SysInfo:GetNotification:
Entity:Input Parameter
Missing

Indicates mandatory parameter Entity is missing in the
service request.

SysInfo:GetNotification:
Key:Input Parameter Missing

Indicates mandatory parameter Key is missing in the ser-
vice request.

SysInfo:GetNotification:
Incorrect SystemData Type,
SystemData Must be a Map

Indicates that either the optional parameter
SystemData specified is not a map or content of
the map is inappropriate to process request.

SysInfo:GetNotification:
Sync Version Not Supported

This message is given when GetNotification is re-
quested without specifying callback or CmdOptions set
to Synchronous request type.

Table 6.216: Error messages

Example

244 Chapter 6. scriptext - Platform Service API Usage from Python runtime

import scriptext
import e32

lock = e32.Ao_lock()
messaging_handle = scriptext.load(’Service.SysInfo’, ’ISysInfo’)

def sysinfo_callback(trans_id, event_id, input_params):
if event_id != scriptext.EventCompleted:

Check the event status
print "Error in retrieving required info"
print "Error code is: " + str(input_params["ReturnValue"]["ErrorCode"])
if "ErrorMessage" in input_params["ReturnValue"]:

print "Error message is: " + input_params["ReturnValue"]["ErrorMessage"]
else:

print "Current Battery charging value: " + str(input_params["ReturnValue"]["Status"])
lock.signal()

Make a request to get notification
event_id = sysinfo_handle.call("GetNotification", {"Entity": u"Battery", "Key": u"ChargingStatus"}, callback=sysinfo_callback)
lock.wait()

6.11. Sys Info 245

6.11.4 Key Values

This section details the key values used in the context of SysInfo Service API invocation.

System Attributes

Entity

Key DataType Description
Entity string Part of system attribute represents an Entity.

Table 6.217: Entity

Key

Key DataType Description
Key string Part of system attribute represents a key with in Entity.

Table 6.218: Key

System Data

SystemData is a map whose keys are defined by one of the following data specifiers described in this section.
These are added to the ReturnValue map. Typically, SystemData is status information that is represented
using integer. In some cases, it is a map of network details, or a list having connection details of each connection.
This section covers all the possible SystemData types.

Key DataType Description
Status int This Key provides status information of system attribute. For exam-

ple, BatteryLevel (0-7), NetworkMode, and BTPower (0-OFF,
1-ON) and so on.

Table 6.219: Status

246 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Key DataType Description
StringData string This Key provides data of type string to specify. For example,

WallpaperPath, IMEI Number, and PhoneModel and so on.

Table 6.220: StringData

Key DataType Description
NetworkName string This Key provides name of the network.
NetworkStatus int Status: Description

-1: Unknown
0: Available. A network that the
ME is allowed to register to.
1: Current. This is the currently registered network.
2: Forbidden. A network that the ME is not allowed to
register to.

NetworkMode int Mode: Description
-1: Unknown
0: Unregistered
1: Global System for Mobile communications (GSM)
2: Advanced Mobile Phone System (AMPS)
3: Code Division Multiple Access (CDMA95)
4: Code Division Multiple Access (CDMA2000)
5: Wideband Code Division Multiple Access (WCDMA)
6: Time Division, Code Division Multiple Access (TD-
CDMA)

CountryCode string Mobile Country Code (MCC).
NetworkCode string Mobile Network Code (MNC).
LocationStatus bool True: Location Area Code (LAC), CellId are valid.

False: Location Area Code (LAC), CellId are invalid.
AreaCode int Location Area Code LAC.
CellId int CellId.

Table 6.221: NetworkInfo

Key DataType Description
ConnectionList Iterator This Iterator points to the list of available active data

connections. ConnectionInfo map represents a data
connection.

Table 6.222: ConnectionList

6.11. Sys Info 247

Key DataType Description
ConnectionStatus int 0: DisConnected

1: Connected
IAPID int Access point ID
ConnectionType int Coloured connection types are not supported.

Mode: Description
-1: Unknown
0: Circuit Switch Data (CSD)
1: WCDMA
2: LAN [Emulator]
3: CDMA2000
4: General Packet Radio Service (GPRS)
5: High Speed Circuit Switched Data (HSCSD)
6: Enhanced Data rates for
Global Evolution GPRS(EdgeGPRS)
7: Wireless Local Area Network(WLAN)
8: Bluetooth
9: Virtual VPN

IAPName string Access Point Name. For example, www.airtelgprs.com.
NetworkName string Network name applicable for WLAN networks.
IAPConnectionName string The access point connection name that is,

MobileOffice, MyGprs.

Table 6.223: ConnectionInfo

Key DataType Description
AccessoryType int -1: Unknown 0: HeadSet 1: BTHeadSet 2: CarKit 3: BTCarKit
AccessoryState int -1: Unknown 0: Disconnected 1: Connected

Table 6.224: AccessoryInfo

Key DataType Description
AccessoryList Iterator This Iterator points to the list connected accessories.

AccessoryInfo map represents an accessory.

Table 6.225: AccessoryList

Key DataType Description
LanguageList List of int This List points to the list of supported language enumerations, which are defined in S60.

Table 6.226: LanguageList

Key DataType Description
MajorVersion string This List points to the list of supported language enumerations, which are defined in S60.
MinorVersion string Minor number of the version. For example, for 3.1, 1 will be minor.

Table 6.227: Version

248 Chapter 6. scriptext - Platform Service API Usage from Python runtime

Key DataType Description
Drive string Drive is a string. For example, c:¿\\, d:¿\\ and so on.
TotalSpace string Total Space in bytes.
FreeSpace string Free Space in bytes.
CriticalSpace int This is the critical free space in bytes.
MediaType int 0: MediaNotPresent

1: MediaUnknown
2: MediaFloppyDisk
3: MediaHardDisk
4: MediaCdRom
5: MediaRam
6: MediaFlash
7: MediaRom
8: MediaRemote
9: MediaNANDFlash
10: MediaRotatingMedia

BatteryState int 0: BatNotSupported
1: BatGood
2: BatLow

DriveName string Drive name

Table 6.228: DriveInfo

Key DataType Description
XPixels int X-Pixels
YPixels int Y-Pixels

Table 6.229: Resolution

Key DataType Description
DriveList List of strings This List points to the list of drives in the terminal. Drives

are represented as strings. For example, c:¿\\ and so on.

Table 6.230: DriveList

Key DataType Description
StringList List of strings This List points to the list of available USB modes.

Table 6.231: StringList

6.11. Sys Info 249

6.12 Appendix

6.12.1 Platform Service API Error Codes and Description

SErrorcode Error Description
-306 Error in processing version information.
-305 Undefined data type is passed as input.
-304 General Error
-302 Interface is not found.
-301 Service is not found.
0 Success
1000 Invalid service argument
1001 Unknown argument name
1002 Bad argument type
1003 Missing argument
1004 Service not supported
1005 Service in use
1006 Service not ready
1007 No memory
1008 Hardware not available
1009 Server busy
1010 Entry exists
1011 Access denied
1012 Not found
1013 Unknown format
1014 General error
1015 Cancel success
1016 Service timed-out
1017 Path not found

Table 6.232: Platform Service API Error Codes

250 Chapter 6. scriptext - Platform Service API Usage from Python runtime

6.12.2 EventID

EventID Description
EventStarted Asynchronous service informs the user to prepare for action.
EventCompleted Asynchronous service request completed.
EventCanceled Asynchronous service request cancelled.
EventError Error during asynchronous service request.
EventStopped Service no longer available or stopped.
EventQueryExit Specifies if exit is possible.
EventInProgress Asynchronous service execution in progress.
EventOutParamCheck This relates to KLiwOptOutParamCheck.
EventInParamCheck This relates to KLiwOptInParamCheck.

Table 6.233: EventID

6.12. Appendix 251

252

CHAPTER

SEVEN

Module Repository

Introduction

Starting with PyS60 1.9.x series, the Python core is upgraded to 2.5.4. With this, PyS60 1.9.x is loaded with
much more core Python modules than the previous PyS60 releases that were based on Python 2.2.2 core. This
also means that the size of the runtime SIS file increases by many folds. Bigger runtime SIS means longer time to
download it and also longer time to install it on to a device. This also results in slowing down the interpreter load
time.

The following were the main ideas behind this packaging tool:

• Reduce the runtime SIS file size, with no compromise on the number of modules supported by the Python
runtime

• Easier SIS packaging for Python applications

• Easier and more robust ways to use and distribute extension modules with your application

These have been achieved in PyS60 1.9.x by:

• Reducing the runtime SIS size by including only the most essential modules in it.

• Providing a repository for those modules that are not included in the runtime SIS. This repository is a part
of the PyS60 Application packager installed on to the host system.

• At the time of packaging a Python application it into a SIS, the application is scanned to find the
dependency modules and packaged them along with the application files.

Module repository (hereafter module-repo) is the name given to the directory structure where all the Python
modules are placed. This can be extended by the users by adding their own modules in it. This also includes
information required to package all the Python modules on which a given Python script is dependent on. This
module-repo is installed on the host machine along with the PyS60 Application Packager.

Note: The following codecs related modules codecs cn, codecs hk, codecs jp, codecs kr and codecs tw are
not packaged automatically. If the application depends on any of them, then they can be packaged by explicitly
specifying them using the –extra-modules option of ensymble. (Use ’Additional options’ field in the GUI)

Extending Module-repo

Developers can extend the module-repo by adding the new modules that they develop or receive from other
extension developers. Module-repo can be extended by the steps mentioned below:

• Place all the Python modules in a directory, named with the module name and copy it to
module-repo\dev-modules directory.

• The module directory should also contain a configuration file named as module config.cfg. This file
contains the information about the module dependencies. It should be a dictionary with key ’type’ which

253

has a value ’repo’ indicating that it is part of module-repo and ’deps’ which is a list of Python modules on
which the module is directly dependent. The packager will automatically scan the application(only .py
files) for dependencies related to Python core modules. If the application is dependent on any dev-module
then it should be mentioned here.

{’type’: ’repo’, ’deps’: ["socket", "btsocket", "my_mod1"]}

Directory structure on the PC

<PythonForS60>\
module-repo\

standard-modules\
...

dev-modules\
module_search_path.cfg
mod1\

module_config.cfg
mod1.py

mod2\
module_config.cfg
kf_mod2.pyd

mod3\
module_config.cfg
mod3\

__init__.py
mod3_run.py

mod4\
module_config.cfg
kf_mod4core.pyd
kf_mod4base.pyd
mod4\

__init__.py
mod4_wrapper.py

• Dev module type-1 : mod1 - A single py file
For developer modules that have a single Python file, the directory should be named after the file and
placed under dev-modules folder. If mod1.py imports any third party PYD modules then it has to explicitly
mention the dev module name so that it is packaged along with the application. This can be mentioned in
the module config.cfg file.

• Dev module type-2 : mod2 - A single PYD
The PYD should be directly under the module folder and should be prefixed with ’kf ’. If the PYD is
dependent on some other dev module then it should be mentioned in the module config.cfg file.

• Dev module type-3 : mod3 - A Python package
If the developer module is a Python package then the package folder should be under another folder named
after the pacakge. The module config.cfg should be outside the package and serves the same purpose as
mentioned above.

• Dev module type-4 : mod4 - A Python package with PYDs
This is a mixture of type-2 and type-3 and in this scenario the PYDs should be at the top level of the
module directory. If an application imports mod4 then the application packager will find the mod4
directory under dev-modules folder and package the mod4 Python package along with the
PYDs(kf mod4core.pyd and kf mod4base.pyd).

Distributing extension modules to application developers

254 Chapter 7. Module Repository

Distributing extension modules to application developers is much easier now with the PyS60 application
packager scanning for dependencies automatically. The extension module developers should create a zip/rar/tar
archive of their module directory in the format mentioned above so that the application developers can directly
extract it to the dev-modules folder. After this the application developers just need to use PyS60 application
packager to package their script. The application packager will automatically scan the dependencies and package
the dev-modules the script is dependent on.

Module search path

A module when being included in the application package, is first searched in the paths specified in the
configuration file - module search path.cfg unless it is distributed by PyS60(e.g. : messaging, contacts, sysinfo
etc.). If it is not found in these locations, then it searches for this module in the module-repo.

The paths in the config file are in a list([’path1’, ’path2’]). This feature is useful in the scenario when the Python
modules (especially the extension modules - PYD files) are not present in the module-repo. The developer can
just specify the path to be searched for the modules, instead of copying them to the module-repo.

For example, if the developer is developing an extension module, he can specify the path to
\epoc32\release\armv5\urel in the module search path and the module is automatically picked up while
packaging. Without this option, the developer needs to copy the module to module-repo every time he compiles
the code.

Directory structure on a device

The application SIS will contain all its dependencies packaged along with it. All the py files except default.py are
zipped into lib.zip and placed in the application’s private directory. A white-list.cfg is maintained which contains
entries for all the PYDs packaged with the application which will be used by PyS60’s import mechanism.

The files are placed on a device as shown below:

!:\
private\

[app-UID]\
white-list.cfg [List of PYDs packaged with the app]
default.py [application script]
lib.zip [standard, dev and application py files]

resource\
python25\

core-modules [PY files compiled and zipped - placed by base runtime]

sys\
bin\

core-modules [PYDs - placed by base runtime]
repo-modules [standard-pyd and dev-pyd files, renamed with application’s UID]

Include additional modules

A new option is added to PyS60 application packager which can be used to include additional modules with the
application. If the application packager does not include a module needed by the application automatically, then
the user can use the --extra-modules option to forcefully include additional modules with the application.

255

256

CHAPTER

EIGHT

Extending and Embedding PyS60

Extending and Embedding Python is explained in the following sections with examples wherever necessary.

8.1 Extending PyS60

The general rules and guidelines for writing Python extensions apply in the S60 Python environment as well.

The steps for the implementation of an extension modules include:

• Preparation of the data structures that make the C/C++ coded extensions visible to the Python interpreter
and make it possible to perform calls from Python to C/C++ code

• Conversions between C/C++ representations of the Python objects and object types used in the extension
code

• Maintenance of the reference counts of the C/C++ representations of the Python objects

• Passing of exceptions between C/C++ code and Python

• Management of interpreter’s thread state and the interpreter lock

In addition to the concerns common for all Python C extensions, the following principles should be considered
when implementing new Python interfaces in the S60 environment:

• Maximize the usage of Python’s built-in types at the interfaces.

• Related to the above: design interfaces in such a way that information can be passed between them with
minimal conversions.

• Convert Symbian operating system exceptions or errors to Python exceptions.

• Unicode strings are used at the interfaces to represent text that gets shown on the GUI. They can be passed
to and from Symbian operating system without conversions.

• While performing potentially long-lasting or blocking calls from an extension implementation to services
outside the interpreter, the interpreter lock must be released and then re-acquired after the call.

• Rather than always implementing a thin wrapper on top of a Symbian OS facility, consider the actual task
for which the script writer needs the particular interface. For example, if the task involves interaction with
the users using the GUI, the script writer’s interest may well be limited to performing the interaction or
information exchange in a way that is compatible with the UI style rather than having full control of the
low-level details of the GUI implementation.

• The C/C++ implementation of a Python interface should be optimized for performance and covering
access to the necessary features of the underlying Platform. Where necessary, the Python programming
interface can be further refined by wrapper modules written in Python.

257

The pyd name should be of the format ’kf ¡module-name¿.pyd’. Note that this change is required only for the
pyd name and module name is not required to have this prefix.

The module initialization function must be exported at ordinal 1. The module identification is based on the
filename only. As a special feature of PyS60, an optional module finalizer function may be exported at ordinal 2.

The extension modules added by the developer should be placed in the module repo folder of the PyS60
Application Packager so that the compiled PYD’s can be picked up while packaging. For information on this
topic refer 8.1.3, Distributing Extension Modules.

8.1.1 Example Extension Module

To demonstrate the writing of an extension module the source and MMP contents for an example module ,
’elemlist’ is given below. This module is about extracting the pointers in a cons cell. A cons cell is composed of
two pointers. The car and cdr are primitive operations upon linked lists composed of cons cells. The car
operation extracts the first pointer, and the cdr operation extracts the second.

258 Chapter 8. Extending and Embedding PyS60

#include "Python.h"

/* type-definition & utility-macros */
typedef struct {

PyObject_HEAD
PyObject *car, *cdr;

} cons_cell;

staticforward PyTypeObject cons_type;

/* a typetesting macro (we don’t use it here) */
#define is_cons(v) ((v)->ob_type == &cons_type)

/* macros to access car & cdr, both as lvalues & rvalues */
#define carof(v) (((cons_cell*)(v))->car)
#define cdrof(v) (((cons_cell*)(v))->cdr)

/* ctor (factory-function) and dtor */
static cons_cell*
cons_new(PyObject *car, PyObject *cdr)
{

cons_cell *cons = PyObject_NEW(cons_cell, &cons_type);
if(cons) {

cons->car = car; Py_INCREF(car); /* INCREF when holding a PyObject* */
cons->cdr = cdr; Py_INCREF(cdr); /* ditto */

}
return cons;

}
static void
cons_dealloc(cons_cell* cons)
{

/* DECREF when releasing previously-held PyObject*’s */
Py_DECREF(carof(cons)); Py_DECREF(cdrof(cons));
PyObject_DEL(cons);

}

/* Python type-object */
statichere PyTypeObject cons_type = {

PyObject_HEAD_INIT(0) /* initialize to 0 to ensure Win32 portability */
0, /*ob_size*/
"cons", /*tp_name*/
sizeof(cons_cell), /*tp_basicsize*/
0, /*tp_itemsize*/
/* methods */
(destructor)cons_dealloc, /*tp_dealloc*/
/* implied by ISO C: all zeros thereafter */

};

/* module-functions */
static PyObject*
cons(PyObject *self, PyObject *args) /* the exposed factory-function */
{

PyObject *car, *cdr;
if(!PyArg_ParseTuple(args, "OO", &car, &cdr))

return 0;
return (PyObject*)cons_new(car, cdr);

}
static PyObject*
car(PyObject *self, PyObject *args) /* car-accessor */
{

PyObject *cons;
if(!PyArg_ParseTuple(args, "O!", &cons_type, &cons)) /* type-checked */

return 0;
return Py_BuildValue("O", carof(cons));

}
static PyObject*
cdr(PyObject *self, PyObject *args) /* cdr-accessor */
{

PyObject *cons;
if(!PyArg_ParseTuple(args, "O!", &cons_type, &cons)) /* type-checked */

return 0;
return Py_BuildValue("O", cdrof(cons));

}
static PyMethodDef elemlist_methods[] = {

{"cons", cons, METH_VARARGS},
{"car", car, METH_VARARGS},
{"cdr", cdr, METH_VARARGS},
{0, 0}

};

/* module entry-point (module-initialization) function */
PyMODINIT_FUNC
initelemlist(void)
{

/* Create the module and add the functions */
PyObject *m = Py_InitModule("elemlist", elemlist_methods);
/* Finish initializing the type-objects */
cons_type.ob_type = &PyType_Type;

}

A brief description of the concepts involved in writing an extension module is put down below. For more

8.1. Extending PyS60 259

information about writing an extension module refer Extending Python from the mainline Python documentation.

The header file Python.h makes the Python API’s accessible in the code. car(), cdr() and cons() are the
functions exposed at Python level so that they can be called after importing the elemlist module. The C
implementation of these functions take arguments as Python objects. To do anything with them in the C function
we have to convert them to C values.

elemlist_methods is the method table for the module. The method table is passed to the interpreter in the
module’s initialization function, initelemlist(). The initialization function must be named initname(),
where name is the name of the module, and should be the only non-static item defined in the module file. The
PyMODINIT FUNC declares the function as void return type, declares any special linkage declarations
required by the platform, and for C++ declares the function as extern "C". When the Python program
imports module elemlist for the first time, initelemlist() is called.

The MMP file contents for the above source is as follows:

TARGETTYPE dll
TARGET kf_elemlist.pyd

CAPABILITY LocalServices NetworkServices ReadUserData WriteUserData UserEnvironment

NOSTRICTDEF
DEFFILE elemlist.def

/* If global data is present in the extension module then this macro should be

* defined in the mmp file.

*/
EPOCALLOWDLLDATA

SYSTEMINCLUDE \epoc32\include\python25
SYSTEMINCLUDE \epoc32\include\stdapis
SYSTEMINCLUDE \epoc32\include

LIBRARY python25.lib

SOURCEPATH ..\src
SOURCE elemlist.c

An example usage of the ’elemlist’ extension module can be:

from elemlist import *
cell = cons(1, 2)
print "car(cell) :", car(cell)
print "cdr(cell) :", cdr(cell)

8.1.2 Compiling the extension module

Requirements

• Series 60 SDK, 3rdEd or higher

• Python for S60 1.9.x SDK package

• Open C/C++ plug-in. Refer the release notes for the version of OpenC to be installed for this release.

Installation
Place the Python for Series 60 SDK 3rdEd under the Symbian SDK installation directory, at the same level as the

260 Chapter 8. Extending and Embedding PyS60

../ext/intro.html

”epoc32” directory. Extract the SDK zip package here(On Windows if you have WinZip installed, right-click on
the zip and in the menu select : ’Winzip-¿Extract to here’)

Building
Modify the mmp file to include ”Location” capability while building for 3rdEdFp2 and higher devices. A script
file build all.cmd that does all the necessary steps (and some extra cleanup, just to be sure) has been provided for
convenience. You can either use that or perform the build manually using these instructions.

• Go to the elemlist directory. Enter:
bldmake bldfiles

• To build the extension for the device, enter:
abld build gcce urel
abld freeze gcce
abld build gcce urel
You should find the built module in (path to your SDK)\epoc32\release\gcce\urel\kf elemlist.pyd

• To build it for the emulator environment, enter:
abld build winscw udeb
abld freeze winscw
abld build winscw udeb
You should find the built module in (path to your SDK)\epoc32\release\winscw\ubed\kf elemlist.pyd

Note: The ”freeze” step needs to be done only when you add any function exports. After ”freeze”, just one ”abld
build gcce urel” or ”abld build winscw udeb” will rebuild the code properly.

8.1.3 Distributing extension modules

Distributing extension modules to application developers is much easier now with the PyS60 application
packager scanning for dependencies automatically. Please refer the topic Distributing extension modules to
application developers in the Chapter Module Repository for information on how this is done.

8.2 Embedding PyS60

There is not much change with respect to embedding Python from what is mentioned in the Python mainline
document apart from the custom memory allocator which is explained later in this Section.

The following code snippet, which prints ’Hello World!’ on the screen, demonstrates the embedding of Python
interpreter in a C code:

The source file contents are as follows:

8.2. Embedding PyS60 261

./modulerepo.html

#include <Python.h>
/* This is a GCCE toolchain workaround needed when compiling with GCCE

and using main() entry point */
#ifdef __GCCE__
#include <staticlibinit_gcce.h>
#endif

int main(void)
{

SPy_DLC_Init();
SPy_SetAllocator(SPy_DLC_Alloc, SPy_DLC_Realloc, SPy_DLC_Free, NULL);
Py_Initialize();
PyRun_SimpleString("print ’Hello World!’");
Py_Finalize();
SPy_DLC_Fini();
return 0;

}

The basic initialization function is Py_Initialize(). This initializes the table of loaded modules, and
creates the fundamental modules builtin , main and sys. It also initializes the module search path
(sys.path). Py_Finalize() is called when the application is done with its use of Python and wants to free all
memory allocated by Python.

PyS60 provides a DLC custom allocator which can be used instead of Python memory allocator.
SPy_SetAllocator() is used for redirecting the allocator used by Python. The arguments to this function
are the custom functions for allocating, reallocating, freeing the memory and a context pointer in that order.
SPy_DLC_Init() is used for initializing the DLC custom allocator. SPy_DLC_Fini() is used for finalizing
the DLC custom allocator and doing a memory cleanup. If you want to use your own custom allocator you will
have to define the allocation, reallocation and free memory functions and pass the function names to
SPy_SetAllocator().

For more information on embedding Python, refer Embedding Python in Another Application

The MMP file contents for the above source is as follows:

TARGET helloworld.exe
TARGETTYPE exe

SYSTEMINCLUDE \epoc32\include\python25
SYSTEMINCLUDE \epoc32\include\stdapis
SYSTEMINCLUDE \epoc32\include

/* Using main() as entry point */
STATICLIBRARY libcrt0.lib

/* libc and euser are always needed when using main() entry point */
LIBRARY libc.lib
LIBRARY euser.lib
LIBRARY python25.lib

SOURCEPATH ..\src
SOURCE helloworld.cpp

8.3 Porting 1.4.x to 1.9.x

The changes needed for porting existing native PyS60 extensions are as follows:

262 Chapter 8. Extending and Embedding PyS60

../ext/embedding.html

• From Symbian 9.1 onwards Symbian allows Writable Static Data in a DLL by making use of
EPOCALLOWDLLDATA keyword in the mmp file. Main reason for this one is for porting some
non-Symbian applications onto Symbian. Thus TLS functionality is no longer needed. Use
EPOCALLOWDLLDATA in the MMP file if the module has initialized static data.

• Use PyGILState_Ensure() and PyGILState_Release() functions for acquiring and releasing
the global interpreter lock, instead of using
PyEval_RestoreThread(PYTHON_TLS->thread_state) and PyEval_SaveThread().

• The interpreter DLL name is changed to python25.lib. This change has to be reflected in the MMP file so
that the module is linked against this DLL instead of python222.lib used in 1.4.x.

• The Python header files are now in \epoc32\include\Python25 and hence the MMP file needs to be
updated accordingly.

• The pyd name should be kf ¡module-name¿.pyd.
Note: This change is required only for the pyd name and module name is not required to have this prefix.

• Packaging an extension module is explained in section 8.1.3, Distributing extension modules.

Note: The init-function still needs to be exported in the pyd at ordinal 1.

Script related changes

• The main script of the PyS60 applications, default.py is not executed directly, as was the case in PyS60
1.4.x. The wrapper script, launcher.py is first executed which in turn does an execfile on the default.py.
Therefore, to exit the application programmatically use appuifw.app.set_exit() or sys.exit()

• PyS60 1.4.x extension modules socket and calendar are renamed to btsocket and e32calendar due to the
conflicting names with Python core modules. Two packaging modes pys60 and pycore have been provided
with Application Packager tool to maintain the compatibility with PyS60 1.4.x binaries. The existing
scripts dependent on these extension modules need not be modified if it is packaged with pys60 mode.

• Unlike PyS60 1.4.x the module names are case sensitive from PyS60 1.9.x. So the scripts written for 1.4.x
will require changes to account for this.

8.3. Porting 1.4.x to 1.9.x 263

264

CHAPTER

NINE

Terms and Abbreviations

The following list defines the terms and abbreviations used in this document:

Term Definition
AAC; Adaptive
Audio Coding

AAC provides basically the same sound quality as MP3 while using a smaller bit
rate. AAC is mainly used to compress music.

Advertise Advertise service in Bluetooth makes it known that a certain Bluetooth service is
available.

AMR Adaptive Multi-rate Codec file format.
API Application Programming Interface
Bluetooth Bluetooth is a technology for wireless communication between devices that is

based on a low-cost short-range radio link.
BPP Bits Per Pixel
C STDLIB Symbian OS’s implementation of the C standard library
Dialog A temporary user interface window for presenting context-specific information to

the user, or prompting for information in a specific context.
Discovery Discovery is a process where Bluetooth finds other nearby Bluetooth devices and

their advertised services.
DLL Dynamic link library
GSM; Global
System for
Mobile commu-
nication

GSM is a digital mobile telephone system that uses a variation of time division
multiple access. It digitizes and compresses data, then sends it down a channel
with two other streams of user data, each in its own time slot.

GUI Graphical User Interface
I/O input/output
IP Internet Protocol
MBM; Multi-
BitMap

The native Symbian OS format used for pictures. MBM files can be generated
with the bmconv.exe tool included in the S60 SDK.

MIDI; Musi-
cal Instrument
Digital Interface

A protocol and a set of commands for storing and transmitting information about
music.

MIF; Multi-
Image File

MIF files are similar to MBM files and can contain compressed SVG-T files. This
file type can be generated with the MifConv.exe tool.

MIME; Multipur-
pose Internet Mail
Extensions

MIME is an extension of the original Internet e-mail protocol that can be used to
exchange different kinds of data files on the Internet.

MP3 A standard technology and format for compressing a sound sequence into a very
small file while preserving the original level of sound quality when it is played.

OS Operating System
Real Audio An audio format developed by Real Networks.
RDBMS Relational database management system
SMS; Short
Message System
(within GSM)

SMS is a service for sending messages of up to 160 characters, or 224 characters
if using a 5-bit mode, to mobile phones that use GSM communication.

265

Term Definition
Softkey Softkey is a key that does not have a fixed function nor a function label printed on

it. On a phone, selection keys reside below or above on the side of the screen, and
derive their meaning from what is presently on the screen.

SQL Structured Query Language
SVG, SVG-T;
Scalable Vector
Graphics (-Tiny)

XML-based vector graphics format for describing two-dimensional graphics and
graphical applications.

Twip Twips are screen-independent units to ensure that the proportion of screen ele-
ments are the same on all display systems. A twip is defined as 1/1440 of an inch,
or 1/567 of a centimeter.

UI User Interface
UI control UI control is a GUI component that enables user interaction and represents prop-

erties or operations of an object.
WAV A file format for recording sound, especially in multimedia applications.

266 Chapter 9. Terms and Abbreviations

BIBLIOGRAPHY

[1] G. van Rossum, and F.L. Drake, Jr., editor. [Python] Library Reference. Available at
http://www.python.org/doc

[2] G. van Rossum, and F.L. Drake, Jr., editor. Extending and Embedding [the Python Interpreter]. Available at
http://www.python.org/doc

[3] G. van Rossum, and F.L. Drake, Jr., editor. Python/C API [Reference Manual]. Available at
http://www.python.org/doc

[4] S60 SDK documentation, available at http://www.forum.nokia.com/

[5] Audio & Video section on the Forum Nokia Web site (for Nokia devices),
http://www.forum.nokia.com/audiovideo

[6] Developers section on the S60 Platform Web site (for all S60 devices), http://www.s60.com/

[7] Python for S60 developer discussion board http://discussion.forum.nokia.com/

[8] Scalable Vector Graphics (SVG) 1.1 Specification http://www.w3.org/TR/SVG/

267

http://www.python.org/doc
http://www.python.org/doc
http://www.python.org/doc
http://www.forum.nokia.com/
http://www.forum.nokia.com/audiovideo
http://www.s60.com/
http://discussion.forum.nokia.com/
http://www.w3.org/TR/SVG/

268

APPENDIX

A

Known Issues

Limitations:

1. On this platform, the stack size is significantly less compared to other platforms and hence deep recursions and
high memory consuming operations may cause stack overflow.

2. Calling setsockopt() on UDP sockets requires that the application is signed with NETWORKCONTROL
capability.

3. The file access time and modification time are same on Symbian and the same behavior is reflected in the
utime module.

4. Using the Listbox widget in large/full screen mode results in an unrefreshed area at the bottom of the screen.
This is a S60 platform limitation and as mentioned in the SDK documentation
(http://www.forum.nokia.com/infocenter/index.jsp?topic=/S60 3rd Edition Cpp Developers Library/GUID-
759FBC7F-5384-4487-8457-A8D4B76F6AA6/html/classCAknSelectionListDialog.html) it works only in the main
pane.
Bugs:

Information about all known bugs can be got from here https://garage.maemo.org/tracker/?group id=854.

269

http://www.forum.nokia.com/infocenter/index.jsp?topic=/S60unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip 3rdunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip Editionunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip Cppunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip Developersunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip Library/GUID-759FBC7F-5384-4487-8457-A8D4B76F6AA6/html/classCAknSelectionListDialog.html
http://www.forum.nokia.com/infocenter/index.jsp?topic=/S60unhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip 3rdunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip Editionunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip Cppunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip Developersunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip Library/GUID-759FBC7F-5384-4487-8457-A8D4B76F6AA6/html/classCAknSelectionListDialog.html
https://garage.maemo.org/tracker/?groupunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip id=854

Failing test cases:

Below is the summary of the standard regrtest Python module executed on this platform.

Tests Comments
test asynchat This test failed when tested on a 5th edition device and is under investigation. It works fine on 3rd edition and 3rd edition FP2 devices.
test builtin test cmp fails because of Stack Overflow
test compiler testCompileLibrary, testLineNo fail because of Stack Overflow. Another reason for this fail is related to the zipping of all the standard Python files.
test copy test deepcopy reflexive dict, test deepcopy reflexive list and test deepcopy reflexive tuple fail because of Stack overflow
test datetime time conversion issues in the dependent libraries
test doctest Python bug (http://bugs.python.org/issue1540)
test exceptions testInfiniteRecursions fail because of Stack Overflow
test mailbox Under investigation
test richcmp This fail is because of Stack overflow
test tarfile Under investigation
test time DST conversion issues in the dependent libraries
test importhooks This fails because distutils module not supported.
test pyclbr This fail is related to the zipping of all the standard Python files.
test repr This fail is related to the zipping of all the standard Python files.
test urllib2 This fail is related to the zipping of all the standard Python files.
test urllib2net Under investigation

Table A.1: Failing test cases

Skipped test cases:

These tests are skipped as one or more modules needed by them are not supported on this platform.

test aepack test al test applesingle test audioop test bsddb test bsddb185 test bsddb3
test bz2 test cd test cl test cmd line test commands test crypt test ctypes
test curses test dbm test distutils test dl test fork1 test gdbm test gl
test grp test hotshot test imageop test imgfile test ioctl test largefile test linuxaudiodev
test macfs test macostools test macpath test mhlib test mmap test nis test openpty
test ossaudiodev test pep277 test plistlib test poll test popen test popen2 test pty
test pwd test resource test rgbimg test scriptpackages test signal test sqlite test startfile
test subprocess test sunaudiodev test sundry test tcl test threadsignals test wait3 test wait4
test winreg test winsound test zipfile64

Table A.2: Skipped test cases

These tests are also skipped, but are related to the zipping of all the standard Python files.

test email test email codecs test email renamed test import

Table A.3: Skipped test cases related to zipping of standard Python files

270 Appendix A. Known Issues

http://bugs.python.org/issue1540

APPENDIX

B

Reporting Bugs

In order to improve the quality of Python for S60 the developers would like to know of any deficiencies you find
in Python for S60 or its documentation.

Before submitting a report, you will be required to log into garage.maemo.org; this will make it possible for the
developers to contact you for additional information if needed. It is not possible to submit a bug report
anonymously.

All bug reports should be submitted via the project Python for S60 Bug Tracker on garage.maemo.org
(https://garage.maemo.org/tracker/?group id=854). The bug tracker offers a Web form which allows pertinent
information to be entered and submitted to the developers.

The first step in filing a report is to determine whether the problem has already been reported. The advantage in
doing so, aside from saving the developers time, is that you learn what has been done to fix it; it may be that the
problem has already been fixed for the next release, or additional information is needed (in which case you are
welcome to provide it if you can!). To do this, search the bug database using the ”Bugs: Browse” link present at
the top of the page.

If the problem you’re reporting is not already in the bug tracker, then click on the ”Submit New” link at the top of
the page to open the bug reporting form.

The submission form has a number of fields. The only fields that are required are the ”Summary” and ”Detailed
descriptioin” fields. For the summary, enter a very short description of the problem; less than ten words is good.
In the Details field, describe the problem in detail, including what you expected to happen and what did happen.
Be sure to include the version of Python for S60 you used using the ”Versioin” field, whether any extension
modules were involved and what hardware (the S60 device model or emulator) you were using, including version
information of the S60 SDK and your device firmware version as appropriate. You can see the device firmware
version by entering *#0000# on the device keypad - please include all information that is shown by this code.

The only other field that you may want to set is the ”Category” field, which allows you to place the bug report
into a broad category (such as ”Documentation” or ”core”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct the problem.
You will receive an update each time action is taken on the bug.

See Also:

How to Report Bugs Effectively
(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)

Article which goes into some detail about how to create a useful bug report. This describes what kind of
information is useful and why it is useful.

Bug Writing Guidelines
(http://www.mozilla.org/quality/bug-writing-guidelines.html)

Information about writing a good bug report. Some of this is specific to the Mozilla project, but describes
general good practices.

271

https://garage.maemo.org/tracker/?groupunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip id=854
http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html
http://www.mozilla.org/quality/bug-writing-guidelines.html

272

MODULE INDEX

A
appuifw, 9
audio, 59

B
btsocket, 67

C
camera, 33
contacts, 71

E
e32, 5
e32calendar, 76
e32db, 80
e32dbm, 82

G
glcanvas, 45
gles, 38
globalui, 26
graphics, 27

I
inbox, 63

K
keycapture, 35

L
location, 64
logs, 85

M
messaging, 62

P
positioning, 65

S
scriptext, 89
sensor, 46
sysinfo, 7

T
telephone, 61
topwindow, 36

273

274

INDEX

Symbols
__del__() (EventFilter method), 47
__delitem__()

CalendarDb method, 77
Contact method, 74
ContactDb method, 72

__getitem__()
array method, 39
CalendarDb method, 77

__init__()
EventFilter method, 47
OrientationEventFilter method, 48
Sensor method, 47

__len__() (array method), 39
__setitem__() (array method), 39

A
access_point() (in module btsocket), 68
access_points() (in module btsocket), 69
activate_tab() (Application method), 14
active_profile() (in module sysinfo), 7
add() (Text method), 19
add_anniversary() (CalendarDb method), 76
add_appointment() (CalendarDb method), 76
add_contact() (ContactDb method), 71
add_event() (CalendarDb method), 76
add_field() (Contact method), 73
add_group() (Groups method), 74
add_image() (TopWindow method), 37
add_reminder() (CalendarDb method), 76
add_todo() (CalendarDb method), 76
address() (Inbox method), 63
AF_BT (data in btsocket), 68
after() (Ao timer method), 7
alarm (Entry attribute), 78
all_keys (data in keycapture), 36
AnniversaryEntry (class in e32calendar), 79
answer() (in module telephone), 61
ao_callgate() (in module e32), 5
Ao_lock (class in e32), 7
ao_sleep() (in module e32), 5
Ao_timer (class in e32), 7
ao_yield() (in module e32), 5
Application (class in appuifw), 13
AppointmentEntry (class in e32calendar), 78

appuifw (standard module), 9
arc() (method), 32
array (class in gles), 38
as_vcalendar() (Entry method), 78
as_vcard() (Contact method), 73
audio (extension module), 59
AUTH (data in btsocket), 68
AUTHOR (data in btsocket), 68
available_fonts() (in module appuifw), 11

B
background_color (TopWindow attribute), 38
battery() (in module sysinfo), 8
begin()

Contact method, 72
Dbms method, 81

begin_redraw() (Canvas method), 25
bind()

Canvas method, 22
GLCanvas method, 45
Inbox method, 64
Listbox method, 20
Text method, 19

blit() (method), 32
body (Application attribute), 13
bt_advertise_service() (in module btsocket),

68
bt_discover() (in module btsocket), 68
bt_obex_discover() (in module btsocket), 68
bt_obex_receive() (in module btsocket), 68
bt_obex_send_file() (in module btsocket), 68
bt_rfcomm_get_available_server_-

channel() (in module btsocket), 68
BTPROTO_RFCOMM (data in btsocket), 68
btsocket (extension module), 67

C
CalendarDb (class in e32calendar), 76
call_state() (in module telephone), 61
callback (EventFilter attribute), 47
calls() (in module logs), 86
camera (extension module), 33
cameras_available() (in module camera), 33
cancel() (Ao timer method), 7
Canvas (class in appuifw), 21
cleanup()

275

EventFilter method, 47
OrientationEventFilter method, 48

clear()
method, 32

Text method, 19
close()

Dbms method, 81
e32dbm method, 85
Sound method, 60

col() (Db view method), 81
col_count() (Db view method), 81
col_length() (Db view method), 81
col_raw() (Db view method), 81
col_rawtime() (Db view method), 82
col_type() (Db view method), 82
color (Text attribute), 17
commit()

Contact method, 73
Dbms method, 81
Entry method, 77

compact()
ContactDb method, 72
Dbms method, 81

compact_required() (ContactDb method), 72
connect() (Sensor method), 47
connected() (Sensor method), 47
Contact (class in contacts), 72
ContactDb (class in contacts), 71
ContactField (class in contacts), 74
contacts (extension module), 71
content() (Inbox method), 63
content (Entry attribute), 77
Content_handler (class in appuifw), 21
corner_type (TopWindow attribute), 38
count_line() (Db view method), 82
create() (Dbms method), 81
cross_out_time (TodoEntry attribute), 79
crossed_out (Entry attribute), 78
current() (Listbox method), 20
current_position() (Sound method), 60
current_volume() (Sound method), 60

D
daily_instances() (CalendarDb method), 77
data_logs() (in module logs), 86
Db_view (class in e32db), 81
Dbms (class in e32db), 81
default_module() (in module positioning), 65
delete()

Inbox method, 64
Text method, 19

dial() (in module telephone), 61
directional_pad (Application attribute), 13
disconnect() (Sensor method), 47
display_pixels() (in module sysinfo), 8
display_twips() (in module sysinfo), 8
drawNow() (GLCanvas method), 45
drive_list() (in module e32), 5

duration() (Sound method), 60

E
e32 (extension module), 5
e32calendar (extension module), 76
e32db (extension module), 80
e32dbm (module), 82
EAColumn (data in appuifw), 15
EApplicationWindow (data in appuifw), 15
EBatteryPane (data in appuifw), 15
EBColumn (data in appuifw), 15
ECColumn (data in appuifw), 15
EContextPane (data in appuifw), 15
EControlPane (data in appuifw), 15
EControlPaneBottom (data in appuifw), 15
EControlPaneTop (data in appuifw), 15
ECreated (data in messaging), 62
EDColumn (data in appuifw), 15
EDeleted (data in messaging), 62
EDraft (data in inbox), 63
EFatalServerError (data in messaging), 62
EFindPane (data in appuifw), 15
EHCenterVBottom (data in appuifw), 26
EHCenterVCenter (data in appuifw), 26
EHCenterVTop (data in appuifw), 26
EHLeftVBottom (data in appuifw), 26
EHLeftVCenter (data in appuifw), 26
EHLeftVTop (data in appuifw), 26
EHRightVBottom (data in appuifw), 26
EHRightVCenter (data in appuifw), 26
EHRightVTop (data in appuifw), 26
EInbox (data in inbox), 63
EIndicatorPane (data in appuifw), 15
ellipse() (method), 32
emails() (in module logs), 86
EMainPane (data in appuifw), 15
EMovedToOutBox (data in messaging), 62
ENaviPane (data in appuifw), 15
ENCRYPT (data in btsocket), 68
end_redraw() (Canvas method), 25
end_time (Entry attribute), 78
ENoServiceCentre (data in messaging), 62
ENotReady (data in audio), 59
Entry (class in e32calendar), 77
EOpen (data in audio), 59
EOpenComplete (data in camera), 33
EOutbox (data in inbox), 63
EPlaying (data in audio), 59
EPrepareComplete (data in camera), 33
ERecordComplete (data in camera), 33
ERecording (data in audio), 59
EScheduledForSend (data in messaging), 62
EScheduleFailed (data in messaging), 62
EScreen (data in appuifw), 15
ESendFailed (data in messaging), 62
ESent

data in inbox, 63
data in messaging, 62

276 Index

ESignalPane (data in appuifw), 15
EStaconBottom (data in appuifw), 15
EStaconTop (data in appuifw), 15
EStatusAnswering (data in telephone), 61
EStatusConnected (data in telephone), 61
EStatusConnecting (data in telephone), 61
EStatusDialling (data in telephone), 61
EStatusDisconnecting (data in telephone), 61
EStatusHold (data in telephone), 61
EStatusIdle (data in telephone), 61
EStatusPane (data in appuifw), 15
EStatusPaneBottom (data in appuifw), 15
EStatusPaneTop (data in appuifw), 15
EStatusReconnectPending (data in telephone),

61
EStatusRinging (data in telephone), 61
EStatusTransferAlerting (data in telephone),

62
EStatusTransferring (data in telephone), 62
EStatusUnknown (data in telephone), 61
ETitlePane (data in appuifw), 15
EUniversalIndicatorPane (data in appuifw),

15
event()

EventFilter method, 47
OrientationEventFilter method, 48

EventEntry (class in e32calendar), 78
EventFilter (class in sensor), 47
EWallpaperPane (data in appuifw), 15
execute()

Dbms method, 81
Form method, 17

exit_key_handler (Application attribute), 13
export_vcalendars() (CalendarDb method), 77
export_vcards() (ContactDb method), 72
exposure_modes() (in module camera), 33

F
faxes() (in module logs), 86
FFormAutoFormEdit (data in appuifw), 16
FFormAutoLabelEdit (data in appuifw), 16
FFormDoubleSpaced (data in appuifw), 16
FFormEditModeOnly (data in appuifw), 16
FFormViewModeOnly (data in appuifw), 16
field_types() (ContactDb method), 72
file_copy() (in module e32), 5
find()

Contact method, 74
ContactDb method, 72

find_instances() (CalendarDb method), 77
first_line() (Db view method), 82
flags (Form attribute), 16
flash_modes() (in module camera), 33
focus

Application attribute, 13
Text attribute, 17

font (Text attribute), 17
Form (class in appuifw), 16

format_rawtime() (in module e32db), 81
format_time() (in module e32db), 81
forwarding (KeyCapturer attribute), 36
free_drivespace() (in module sysinfo), 8
free_ram() (in module sysinfo), 8
full_name() (Application method), 14

G
get() (Text method), 19
get_capabilities() (in module e32), 6
get_line() (Db view method), 82
get_pos() (Text method), 19
get_repeat() (Entry method), 78
glBufferData() (in module gles), 42
glBufferDatab() (in module gles), 42
glBufferDataf() (in module gles), 42
glBufferDatas() (in module gles), 42
glBufferDataub() (in module gles), 42
glBufferDataus() (in module gles), 42
glBufferDatax() (in module gles), 42
glBufferSubData() (in module gles), 43
glBufferSubDatab() (in module gles), 43
glBufferSubDataf() (in module gles), 43
glBufferSubDatas() (in module gles), 43
glBufferSubDataub() (in module gles), 43
glBufferSubDataus() (in module gles), 43
glBufferSubDatax() (in module gles), 43
GLCanvas (class in glcanvas), 45
glcanvas (extension module), 45
glClipPlanef() (in module gles), 43
glClipPlanex() (in module gles), 43
glColorPointer() (in module gles), 39
glColorPointerf() (in module gles), 39
glColorPointerub() (in module gles), 39
glColorPointerx() (in module gles), 39
glCompressedTexImage2D() (in module gles),

39
glCompressedTexSubImage2D() (in module

gles), 39
glDeleteBuffers() (in module gles), 43
glDeleteTextures() (in module gles), 40
glDrawElements() (in module gles), 40
glDrawElementsub() (in module gles), 40
glDrawElementsus() (in module gles), 40
glDrawTexfvOES() (in module gles), 43
glDrawTexivOES() (in module gles), 43
glDrawTexsvOES() (in module gles), 43
gles (extension module), 38
glFogv() (in module gles), 40
glFogxv() (in module gles), 40
glGenBuffers() (in module gles), 43
glGenTextures() (in module gles), 40
glGetBooleanv() (in module gles), 43
glGetBufferParameteriv() (in module gles),

43
glGetClipPlanef() (in module gles), 43
glGetFixedv() (in module gles), 43
glGetFloatv() (in module gles), 43

Index 277

glGetIntegerv() (in module gles), 40
glGetLightfv() (in module gles), 44
glGetLightxv() (in module gles), 44
glGetMaterialfv() (in module gles), 44
glGetMaterialxv() (in module gles), 44
glGetString() (in module gles), 40
glGetTexEnvf() (in module gles), 44
glGetTexEnvx() (in module gles), 44
glGetTexParameterf() (in module gles), 44
glGetTexParameterx() (in module gles), 44
glLightfv() (in module gles), 40
glLightModelfv() (in module gles), 40
glLightModelxv() (in module gles), 40
glLightxv() (in module gles), 40
glLoadMatrixf() (in module gles), 40
glLoadMatrixx() (in module gles), 40
glMaterialfv() (in module gles), 40
glMaterialxv() (in module gles), 40
glMatrixIndexPointerOES() (in module gles),

44
glMatrixIndexPointerOESub() (in module

gles), 44
glMultMatrixf() (in module gles), 40
glMultMatrixx() (in module gles), 40
glNormalPointer() (in module gles), 40
glNormalPointerb() (in module gles), 41
glNormalPointerf() (in module gles), 41
glNormalPointers() (in module gles), 41
glNormalPointerx() (in module gles), 41
global_msg_query() (in module globalui), 27
global_note() (in module globalui), 26
global_popup_menu() (in module globalui), 27
global_query() (in module globalui), 26
globalui (extension module), 26
glPointParameterfv() (in module gles), 44
glPointParameterxv() (in module gles), 44
glPointSizePointerOES() (in module gles), 44
glPointSizePointerOESf() (in module gles),

44
glPointSizePointerOESx() (in module gles),

44
glReadPixels() (in module gles), 41
glTexCoordPointer() (in module gles), 41
glTexCoordPointerb() (in module gles), 41
glTexCoordPointerf() (in module gles), 41
glTexCoordPointers() (in module gles), 41
glTexCoordPointerx() (in module gles), 41
glTexEnvfv() (in module gles), 41
glTexEnvxv() (in module gles), 41
glTexImage2D() (in module gles), 41
glTexSubImage2D() (in module gles), 41
glVertexPointer() (in module gles), 41
glVertexPointerb() (in module gles), 42
glVertexPointerf() (in module gles), 42
glVertexPointers() (in module gles), 42
glVertexPointerx() (in module gles), 42
glWeightPointerOES() (in module gles), 44
glWeightPointerOESf() (in module gles), 44

glWeightPointerOESx() (in module gles), 45
graphics (extension module), 27
Group (class in contacts), 75
Groups (class in contacts), 74
groups (ContactDb attribute), 72
gsm_location() (in module location), 64

H
hang_up() (in module telephone), 61
has_capabilities() (in module e32), 6
hide()

InfoPopup method, 26
TopWindow method, 37

highlight_color (Text attribute), 18
HIGHLIGHT_ROUNDED (data in appuifw), 18
HIGHLIGHT_SHADOW (data in appuifw), 18
HIGHLIGHT_STANDARD (data in appuifw), 18

I
Icon (class in appuifw), 21
id

Contact attribute, 72
Entry attribute, 78
Group attribute, 75

Image.inspect() (in module graphics), 28
Image.new() (in module graphics), 27
Image.open() (in module graphics), 28
image_modes() (in module camera), 33
image_sizes() (in module camera), 33
images (TopWindow attribute), 37
imei() (in module sysinfo), 8
import_vcalendars() (CalendarDb method), 77
import_vcards() (ContactDb method), 72
in_emulator() (in module e32), 5
inactivity() (in module e32), 6
Inbox (class in inbox), 63
inbox (extension module), 63
incoming_call() (in module telephone), 61
InfoPopup (class in appuifw), 25
insert() (Form method), 17
is_col_null() (Db view method), 82
is_group (Contact attribute), 72
is_ui_thread() (in module e32), 6

K
keycapture (extension module), 35
keys() (ContactDb method), 72
keys (KeyCapturer attribute), 36
KMdaRepeatForever (data in audio), 59

L
label (ContactField attribute), 74
last_key() (KeyCapturer method), 36
last_modified

Contact attribute, 72
Entry attribute, 78

last_position() (in module positioning), 66
layout() (Application method), 14

278 Index

len() (Text method), 19
length() (Form method), 17
line() (method), 32
Listbox (class in appuifw), 19
load() (Image method), 28
location

ContactField attribute, 74
Entry attribute, 78
extension module, 64

log_data() (in module logs), 86
log_data_by_time() (in module logs), 86
logs (extension module), 85

M
makeCurrent() (GLCanvas method), 45
max_ramdrive_size() (in module sysinfo), 8
max_volume() (Sound method), 60
max_zoom() (in module camera), 33
maximum_size (TopWindow attribute), 38
measure_text() (method), 32
menu

Application attribute, 14
Form attribute, 16

messaging (extension module), 62
mms_send() (in module messaging), 62
module_info() (in module positioning), 65
modules() (in module positioning), 65
monthly_instances() (CalendarDb method), 77
multi_query() (in module appuifw), 12
multi_selection_list() (in module appuifw),

12

N
name (Group attribute), 75
next_line() (Db view method), 82
note() (in module appuifw), 12

O
OBEX (data in btsocket), 68
open()

Content handler method, 21
Dbms method, 81
in module contacts, 71
in module e32calendar, 76
in module e32dbm, 84

open_standalone() (Content handler method),
21

orientation (Application attribute), 14
orientation.BACK (attribute), 46
orientation.BOTTOM (attribute), 46
orientation.FRONT (attribute), 46
orientation.LEFT (attribute), 46
orientation.RIGHT (attribute), 46
orientation.TOP (attribute), 46
OrientationEventFilter (class in sensor), 48
originating (Entry attribute), 78
os_version() (in module sysinfo), 8

P
pieslice() (method), 32
play() (Sound method), 59
point() (method), 32
polygon() (method), 32
pop() (Form method), 17
popup_menu() (in module appuifw), 12
position() (in module positioning), 65
position

Listbox attribute, 20
TopWindow attribute, 37

POSITION_INTERVAL (data in positioning), 65
positioning (extension module), 65
prepare() (Db view method), 82
priority (Entry attribute), 78
pys60_version (data in e32), 5
pys60_version_info (data in e32), 6

Q
query() (in module appuifw), 11

R
raw_log_data() (in module logs), 86
record() (Sound method), 60
rectangle() (method), 32
release() (in module camera), 35
ReminderEntry (class in e32calendar), 79
remove_image() (TopWindow method), 37
reorganize() (e32dbm method), 85
replication (Entry attribute), 78
reset_inactivity() (in module e32), 6
resize() (Image method), 28
RFCOMM (data in btsocket), 68
ring_type() (in module sysinfo), 8
rollback()

Contact method, 73
Dbms method, 81
Entry method, 77

RotEventFilter (class in sensor), 48

S
s60_version_info (data in e32), 6
save() (Image method), 28
save_hook (Form attribute), 16
say() (in module audio), 59
scheduler_logs() (in module logs), 86
schema (ContactField attribute), 74
screen (Application attribute), 14
screenshot() (in module graphics), 27
scriptext (extension module), 89
select_access_point() (in module btsocket),

68
select_module() (in module positioning), 65
selection_list() (in module appuifw), 12
Sensor (class in sensor), 47
sensor (extension module), 46
sensors() (in module sensor), 46

Index 279

set() (Text method), 19
set_default_access_point() (in module bt-

socket), 68
set_event_filter() (Sensor method), 47
set_exit() (Application method), 16
set_home_time() (in module e32), 5
set_list() (Listbox method), 20
set_pos() (Text method), 19
set_position() (Sound method), 60
set_repeat() (Entry method), 77
set_requestors() (in module positioning), 65
set_security() (in module btsocket), 68
set_tabs() (Application method), 16
set_time() (Entry method), 78
set_unread() (inbox method), 64
set_volume() (Sound method), 60
shadow (TopWindow attribute), 38
show()

InfoPopup method, 26
TopWindow method, 37

signal() (Ao lock method), 7
signal_bars() (in module sysinfo), 8
signal_dbm() (in module sysinfo), 8
size

Canvas attribute, 25
Image attribute, 29
Listbox attribute, 20
TopWindow attribute, 37

sms() (in module logs), 86
sms_messages() (Inbox method), 63
sms_send() (in module messaging), 62
Sound (class in audio), 59
Sound.open() (in module audio), 59
start() (KeyCapturer method), 36
start_exe() (in module e32), 6
start_finder() (in module camera), 35
start_record() (in module camera), 35
start_server() (in module e32), 6
start_time (Entry attribute), 78
state() (Sound method), 60
stop()

Image method, 29
KeyCapturer method, 36
Sound method, 60

stop_finder() (in module camera), 35
stop_position() (in module positioning), 65
stop_record() (in module camera), 35
style (Text attribute), 18
STYLE_BOLD (data in appuifw), 18
STYLE_ITALIC (data in appuifw), 18
STYLE_STRIKETHROUGH (data in appuifw), 18
STYLE_UNDERLINE (data in appuifw), 18
sw_version() (in module sysinfo), 8
sync() (e32dbm method), 85
sysinfo (extension module), 7

T
take_photo() (in module camera), 33

telephone (extension module), 61
text() (method), 32
time() (Inbox method), 63
title

Application attribute, 14
Contact attribute, 72

TodoEntry (class in e32calendar), 79
TopWindow (class in topwindow), 37
topwindow (extension module), 36
total_ram() (in module sysinfo), 8
total_rom() (in module sysinfo), 8
touch_enabled() (in module appuifw), 11
track_allocations (Application attribute), 14
transpose() (Image method), 28
twipsize (Image attribute), 29
type (ContactField attribute), 74

U
uid() (Application method), 16
unread() (Inbox method), 64

V
value (ContactField attribute), 74
visible (TopWindow attribute), 38

W
wait() (Ao lock method), 7
white_balance_modes() (in module camera), 33

280 Index

	1 Getting Started
	1.1 Installing Python runtime and its dependencies
	1.2 Packaging a Sample Application
	1.2.1 On a Windows host machine
	1.2.2 On a Linux or Mac host machine

	2 Operating System Services and Information
	2.1 e32 --- A Symbian OS related services package
	2.1.1 Module Level Functions
	2.1.2 Ao_lock Type
	2.1.3 Ao_timer Type

	2.2 sysinfo --- Access to system information

	3 User Interface and Graphics
	3.1 appuifw --- Interface to the S60 GUI framework
	3.1.1 Basics of appuifw Module
	3.1.2 Softkeys
	3.1.3 Module Level Functions
	3.1.4 Application Type
	3.1.5 Form Type
	3.1.6 Text Type
	3.1.7 Listbox Type
	3.1.8 Icon Type
	3.1.9 Content_handler Type
	3.1.10 Canvas Type
	3.1.11 InfoPopup Type

	3.2 globalui --- Interface to the S60 global UI notifiers
	3.3 graphics --- A graphics related services package
	3.3.1 Module Level Functions
	3.3.2 Image Class Static Methods
	3.3.3 Image Objects
	3.3.4 Common Features of Drawable Objects
	Options
	Coordinate representation
	Color representation
	Font specifications
	Common Methods of Drawable Objects

	3.4 camera --- Interface for taking photographs and video recording
	3.5 keycapture --- Interface for global capturing of key events.
	3.5.1 Module Level Constants
	3.5.2 KeyCapturer objects

	3.6 topwindow --- Interface for creating windows that are shown on top of other applications.
	3.6.1 TopWindow objects

	3.7 gles --- Bindings to OpenGL ES
	3.7.1 array type
	3.7.2 Error handling
	3.7.3 Differences to OpenGL ES C API
	OpenGL ES 1.0
	OpenGL ES 1.1

	3.8 glcanvas --- UI Control for Displaying OpenGL ES Graphics
	3.9 sensor --- Module to access the device sensors.
	3.9.1 Module for devices that support S60 Sensor API
	Module Level Functions
	Constants
	Classes

	3.9.2 Module for devices that support S60 Sensor FrameWork
	Module Level Functions
	Base Class
	class AccelerometerXYZAxisData
	class AccelerometerDoubleTappingData
	class MagnetometerXYZAxisData
	class MagneticNorthData
	class AmbientLightData
	class ProximityMonitor
	class OrientationData
	class RotationData

	4 Audio and Communication Services
	4.1 audio --- An audio related services package
	4.1.1 Sound Objects

	4.2 telephone --- Telephone services
	4.3 messaging --- A messaging services package
	4.4 inbox --- Interface to device inbox
	4.4.1 Inbox Objects

	4.5 location --- GSM location information
	4.5.1 Examples

	4.6 positioning --- Simplified interface to the position information
	4.6.1 Example

	4.7 btsocket --- Provides Bluetooth (BT) support

	5 Data Management
	5.1 contacts --- A contacts related services package
	5.1.1 Module Level Functions
	5.1.2 ContactDb Object
	5.1.3 Contact Object
	5.1.4 ContactField Object
	5.1.5 Groups Object
	5.1.6 Group Object

	5.2 e32calendar --- Access to calendar related services
	5.2.1 Module Level Functions
	5.2.2 CalendarDb Objects
	5.2.3 Entry Objects
	AppointmentEntry Objects
	EventEntry
	AnniversaryEntry
	ReminderEntry
	TodoEntry

	5.2.4 Repeat Rules

	5.3 e32db --- Interface to the Symbian native DB
	5.3.1 Dbms Objects
	5.3.2 DBunhbox voidb@x penalty @M hskip z@skip unhbox voidb@x kern .06emvbox {hrule width.3em}discretionary {-}{}{}penalty @M hskip z@skip view Objects
	5.3.3 Mapping Between SQL and Python Data Types
	5.3.4 Date and Time Handling

	5.4 e32dbm --- DBM implemented using the Symbian native DBMS
	5.4.1 Module Level Functions
	5.4.2 e32dbm Objects

	5.5 logs --- Module to access the phone logs.
	5.5.1 Module Level Functions

	5.6 Acronyms and Abbreviations

	6 scriptext - Platform Service API Usage from Python runtime
	6.1 Overview of scriptext usage
	6.1.1 Module level functions and Data Types
	6.1.2 Instantiating a Service Object
	6.1.3 Making Synchronous Request
	6.1.4 Making Asynchronous Request
	6.1.5 Cancelling of Asynchronous Service Request

	6.2 Application Manager
	6.2.1 GetList
	6.2.2 LaunchApp
	6.2.3 LaunchDoc

	6.3 Calendar
	6.3.1 GetList
	6.3.2 Add
	6.3.3 Delete
	6.3.4 Import
	6.3.5 Export
	6.3.6 RequestNotification
	6.3.7 Key Values

	6.4 Contacts
	6.4.1 GetList
	6.4.2 Add
	6.4.3 Delete
	6.4.4 Import
	6.4.5 Export
	6.4.6 Organise
	6.4.7 Key Values

	6.5 Landmarks
	6.5.1 New
	6.5.2 GetList
	6.5.3 Add
	6.5.4 Delete
	6.5.5 Import
	6.5.6 Export
	6.5.7 Organise
	6.5.8 Key Values

	6.6 Location
	6.6.1 GetList
	6.6.2 Trace
	6.6.3 CancelNotification
	6.6.4 MathOperations

	6.7 Logging
	6.7.1 Add
	6.7.2 GetList
	6.7.3 Delete
	6.7.4 RequestNotification

	6.8 Messaging
	6.8.1 GetList
	6.8.2 Send
	6.8.3 RegisterNotification
	6.8.4 CancelNotification
	6.8.5 ChangeStatus
	6.8.6 Delete

	6.9 Media Management
	6.9.1 GetList
	6.9.2 Key Values

	6.10 Sensors
	6.10.1 FindSensorChannel
	6.10.2 RegisterForNotification
	6.10.3 GetChannelProperty

	6.11 Sys Info
	6.11.1 GetInfo
	6.11.2 SetInfo
	6.11.3 GetNotification
	6.11.4 Key Values
	System Attributes
	System Data

	6.12 Appendix
	6.12.1 Platform Service API Error Codes and Description
	6.12.2 EventID

	7 Module Repository
	8 Extending and Embedding PyS60
	8.1 Extending PyS60
	8.1.1 Example Extension Module
	8.1.2 Compiling the extension module
	8.1.3 Distributing extension modules

	8.2 Embedding PyS60
	8.3 Porting 1.4.x to 1.9.x

	9 Terms and Abbreviations
	A Known Issues
	B Reporting Bugs
	Module Index
	Index

