
Sourcery CodeBench Lite

ARM SymbianOS

Sourcery CodeBench Lite 2012.03-42

Getting Started

Sourcery CodeBench Lite: ARM SymbianOS: Sourcery
CodeBench Lite 2012.03-42: Getting Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010, 2011 CodeSourcery, Inc.
All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery CodeBench Lite, Code-
Sourcery's customized and validated version of the GNU Toolchain. Sourcery CodeBench Lite includes
everything you need for application development, including C and C++ compilers, assemblers,
linkers, and libraries.

When you have finished reading this guide, you will know how to use Sourcery CodeBench from
the command line.

Table of Contents
Preface ... iv

1. Intended Audience .. v
2. Organization .. v
3. Typographical Conventions .. v

1. Quick Start .. 1
1.1. Installation and Set-Up ... 2
1.2. Building Your Program ... 2
1.3. Running and Debugging Your Program .. 2

2. Installation and Configuration ... 3
2.1. Terminology ... 4
2.2. System Requirements ... 4
2.3. Downloading an Installer ... 5
2.4. Installing Sourcery CodeBench Lite .. 5
2.5. Installing Sourcery CodeBench Lite Updates ... 8
2.6. Setting up the Environment .. 8
2.7. Uninstalling Sourcery CodeBench Lite ... 10

3. Sourcery CodeBench Lite for ARM SymbianOS ... 12
3.1. Included Components and Features .. 13
3.2. Library Configurations .. 13
3.3. Building SymbianOS Programs .. 13
3.4. SymbianOS Runtime Libraries ... 16
3.5. NEON SIMD Code .. 16
3.6. Fixed-Point Arithmetic .. 16
3.7. Half-Precision Floating Point ... 17
3.8. ABI Compatibility .. 17

4. Using Sourcery CodeBench from the Command Line .. 19
4.1. Building an Application ... 20
4.2. Running Applications on the Target System ... 20

5. Next Steps with Sourcery CodeBench ... 21
5.1. Sourcery CodeBench Knowledge Base ... 22
5.2. Example Programs ... 22
5.3. Manuals for GNU Toolchain Components ... 22

A. Sourcery CodeBench Lite Release Notes .. 24
A.1. Changes in Sourcery CodeBench Lite for ARM SymbianOS 25

B. Sourcery CodeBench Lite Licenses ... 31
B.1. Licenses for Sourcery CodeBench Lite Components ... 32
B.2. Sourcery CodeBench Software License Agreement .. 32
B.3. Attribution .. 36

iii

Preface
This preface introduces the Sourcery CodeBench Lite Getting Started guide. It explains the
structure of this guide and describes the documentation conventions used.

iv

1. Intended Audience
This guide is written for people who will install and/or use Sourcery CodeBench Lite. This guide
provides a step-by-step guide to installing Sourcery CodeBench Lite and to building simple applica-
tions. Parts of this document assume that you have some familiarity with using the command-line
interface.

2. Organization
This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start” This chapter includes a brief checklist to follow when in-
stalling and using Sourcery CodeBench Lite for the first time.
You may use this chapter as an abbreviated guide to the rest
of this manual.

Chapter 2, “Installation and Config-
uration”

This chapter describes how to download, install and configure
Sourcery CodeBench Lite. This section describes the available
installation options and explains how to set up your environ-
ment so that you can build applications.

Chapter 3, “Sourcery CodeBench
Lite for ARM SymbianOS”

This chapter contains information about using Sourcery
CodeBench Lite that is specific to ARM SymbianOS targets.
You should read this chapter to learn how to best use Sourcery
CodeBench Lite on your target system.

Chapter 4, “Using Sourcery
CodeBench from the Command
Line”

This chapter explains how to build applications with Sourcery
CodeBench Lite using the command line. In the process of
reading this chapter, you will build a simple application that
you can use as a model for your own programs.

Chapter 5, “Next Steps with Sourcery
CodeBench”

This chapter describes where you can find additional docu-
mentation and information about using Sourcery CodeBench
Lite and its components. It also provides information about
Sourcery CodeBench subscriptions. CodeSourcery customers
with Sourcery CodeBench subscriptions receive comprehens-
ive support for Sourcery CodeBench.

Appendix A, “Sourcery CodeBench
Lite Release Notes”

This appendix contains information about changes in this re-
lease of Sourcery CodeBench Lite for ARM SymbianOS. You
should read through these notes to learn about new features
and bug fixes.

Appendix B, “Sourcery CodeBench
Lite Licenses”

This appendix provides information about the software li-
censes that apply to Sourcery CodeBench Lite. Read this ap-
pendix to understand your legal rights and obligations as a
user of Sourcery CodeBench Lite.

3.Typographical Conventions
The following typographical conventions are used in this guide:

v

Preface

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

vi

Preface

Chapter 1
Quick Start
This chapter includes a brief checklist to follow when installing and using Sourcery
CodeBench Lite for the first time.You may use this chapter as an abbreviated guide to the
rest of this manual.

1

Follow the steps given in this chapter to install Sourcery CodeBench Lite and build and run your
first application program. The checklist given here is not a tutorial and does not include detailed in-
structions for each step; however, it will help guide you to find the instructions and reference inform-
ation you need to accomplish each step.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery CodeBench Lite in Chapter 3, “Sourcery CodeBench Lite for ARM SymbianOS”.

1.1. Installation and Set-Up
Install Sourcery CodeBench Lite on your host computer. You may download an installer
package from the Sourcery CodeBench web site1, or you may have received an installer on CD. The
installer is an executable program that pops up a window on your computer and leads you through
a series of dialogs to configure your installation. When the installation is complete, it offers to launch
the Getting Started guide. For more information about installing Sourcery CodeBench Lite, including
host system requirements and tips to set up your environment after installation, refer to Chapter 2,
“Installation and Configuration”.

1.2. Building Your Program
Build your program with Sourcery CodeBench command-line tools. Create a simple test
program, and follow the directions in Chapter 4, “Using Sourcery CodeBench from the Command
Line” to compile and link it using Sourcery CodeBench Lite.

1.3. Running and Debugging Your Program
The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target.

1 http://go.mentor.com/codebench/

2

Quick Start

http://go.mentor.com/codebench/
http://go.mentor.com/codebench/

Chapter 2
Installation and Configuration
This chapter explains how to install Sourcery CodeBench Lite.You will learn how to:

1. Verify that you can install Sourcery CodeBench Lite on your system.

2. Download the appropriate Sourcery CodeBench Lite installer.

3. Install Sourcery CodeBench Lite.

4. Configure your environment so that you can use Sourcery CodeBench Lite.

3

2.1.Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
CodeBench while the term target system refers to the system on which the code produced by Sourcery
CodeBench runs. The target system for this version of Sourcery CodeBench is
arm-none-symbianelf.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery CodeBench, then the host and target systems are the same. On the other hand, if you
are developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements
2.2.1. Host Operating System Requirements

This version of Sourcery CodeBench supports the following host operating systems and architectures:

• Microsoft Windows XP (SP1), Windows Vista, and Windows 7 systems using IA32, AMD64,
and Intel 64 processors.

• GNU/Linux systems using IA32, AMD64, or Intel 64 processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), SuSE Enterprise Linux 8 (and later), and Ubuntu 8.04
(and later).

Sourcery CodeBench is built as a 32-bit application. Therefore, even when running on a 64-bit host
system, Sourcery CodeBench requires 32-bit host libraries. If these libraries are not already installed
on your system, you must install them before installing and using Sourcery CodeBench Lite. Consult
your operating system documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery CodeBench graphical installer is incompatible with the dash shell, which is
the default /bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions.
To install Sourcery CodeBench Lite on these systems, you must make /bin/sh a symbolic
link to one of the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery
CodeBench Lite toolchain.

2.2.2. Host Hardware Requirements

In order to install and use Sourcery CodeBench Lite, you must have at least 512MB of available
memory.

The amount of disk space required for a complete Sourcery CodeBench Lite installation directory
depends on the host operating system and the number of target libraries included. When you start
the graphical installer, it checks whether there is sufficient disk space before beginning to install.
Note that the graphical installer also requires additional temporary disk space during the installation

4

Installation and Configuration

process. On Microsoft Windows hosts, the installer uses the location specified by the TEMP environ-
ment variable for these temporary files. If there is not enough free space on that volume, the installer
prompts for an alternate location. On Linux hosts, the installer puts temporary files in the directory
specified by the IATEMPDIR environment variable, or /tmp if that is not set.

2.2.3.Target System Requirements

See Chapter 3, “Sourcery CodeBench Lite for ARM SymbianOS” for requirements that apply to the
target system.

2.3. Downloading an Installer
If you have received Sourcery CodeBench Lite on a CD, or other physical media, then you do not
need to download an installer. You may skip ahead to Section 2.4, “Installing Sourcery CodeBench
Lite”.

You can download Sourcery CodeBench Lite from the Sourcery CodeBench web site1. This free
version of Sourcery CodeBench, which is made available to the general public, does not include all
the functionality of CodeSourcery's product releases. If you prefer, you may instead purchase or re-
gister for an evaluation of CodeSourcery's product toolchains at the Sourcery CodeBench Portal2.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery CodeBench installer is provided
as an executable with the .exe extension. For GNU/Linux systems Sourcery CodeBench Lite is
provided as an executable installer package with the .bin extension. You may also install from a
compressed archive with the .tar.bz2 extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

2.4. Installing Sourcery CodeBench Lite
The method used to install Sourcery CodeBench Lite depends on your host system and the kind of
installation package you have downloaded.

2.4.1. Using the Sourcery CodeBench Lite Installer on Microsoft Win-
dows

If you have received Sourcery CodeBench Lite on CD, insert the CD in your computer. On most
computers, the installer then starts automatically. If your computer has been configured not to auto-
matically run CDs, open My Computer, and double click on the CD. If you downloaded Sourcery
CodeBench Lite, double-click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery CodeBench Lite. The installer
is intended to be self-explanatory and on most pages the defaults are appropriate.

1 http://go.mentor.com/codebench/
2 https://sourcery.mentor.com/GNUToolchain/

5

Installation and Configuration

http://go.mentor.com/codebench/
https://sourcery.mentor.com/GNUToolchain/
http://go.mentor.com/codebench/
https://sourcery.mentor.com/GNUToolchain/

Running the Installer. The graphical installer guides you through the steps to
install Sourcery CodeBench Lite.

You may want to change the install directory pathname and customize the shortcut installation.

Choose Install Folder. Select the pathname to your install directory.

6

Installation and Configuration

Choose Shortcut Folder. You can customize where the installer creates
shortcuts for quick access to Sourcery CodeBench Lite.

When the installer has finished, it asks if you want to launch a viewer for the Getting Started guide.
Finally, the installer displays a summary screen to confirm a successful install before it exits.

Install Complete. You should see a screen similar to this after a successful
install.

If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -i console command-line option. For example:

> /path/to/package.exe -i console

2.4.2. Using the Sourcery CodeBench Lite Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

7

Installation and Configuration

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery CodeBench Lite. For addi-
tional details on running the installer, see the discussion and screen shots in the Microsoft Windows
section above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-i console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.4.3. Installing Sourcery CodeBench Lite from a Compressed Archive

You do not need to be a system administrator to install Sourcery CodeBench Lite from a compressed
archive. You may install Sourcery CodeBench Lite using any user account and in any directory to
which you have write access. This guide assumes that you have decided to install Sourcery CodeBench
Lite in the $HOME/CodeSourcery subdirectory of your home directory and that the filename of
the package you have downloaded is /path/to/package.tar.bz2. After installation the
toolchain will be in $HOME/CodeSourcery/sourceryg++-2012.03.

First, uncompress the package file:

> bunzip2 /path/to/package.tar.bz2

Next, create the directory in which you wish to install the package:

> mkdir -p $HOME/CodeSourcery

Change to the installation directory:

> cd $HOME/CodeSourcery

Unpack the package:

> tar xf /path/to/package.tar

2.5. Installing Sourcery CodeBench Lite Updates
If you have already installed an earlier version of Sourcery CodeBench Lite for ARM SymbianOS
on your system, it is not necessary to uninstall it before using the installer to unpack a new version
in the same location. The installer detects that it is performing an update in that case.

If you are installing an update from a compressed archive, it is recommended that you remove any
previous installation in the same location, or install in a different directory.

Note that the names of the Sourcery CodeBench commands for the ARM SymbianOS target all begin
with arm-none-symbianelf. This means that you can install Sourcery CodeBench for multiple
target systems in the same directory without conflicts.

2.6. Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

8

Installation and Configuration

2.6.1. Setting up the Environment on Microsoft Windows Hosts

2.6.1.1. Setting the PATH

If you installed Sourcery CodeBench Lite using the graphical installer then you may skip this step.
The installer does this setup for you.

In order to use the Sourcery CodeBench tools from the command line, you should add them to your
PATH. In the instructions that follow, replace installdir with the full pathname of your Sourcery
CodeBench Lite installation directory, including the drive letter.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd.exe
shell:

> setx PATH "%PATH%;installdir\bin"

To set the PATH on a system running Microsoft Windows 7, from the desktop bring up the Start
menu and right click on Computer. Select Properties and click on Advanced system
settings. Go to the Advanced tab, then click on the Environment Variables button.
Select the PATH variable and click Edit. Add the string ;installdir\bin to the end, and click
OK.

To set the PATH on older versions of Microsoft Windows, from the desktop bring up the Start
menu and right click on My Computer. Select Properties, go to the Advanced tab, then click
on the Environment Variables button. Select the PATH variable and click the Edit. Add
the string ;installdir\bin to the end, and click OK.

You can verify that your PATH is set up correctly by starting a new cmd.exe shell and running:

> arm-none-symbianelf-g++ -v

Verify that the last line of the output contains: Sourcery CodeBench Lite 2012.03-42.

2.6.1.2. Working with Cygwin

Sourcery CodeBench Lite does not require Cygwin or any other UNIX emulation environment. You
can use Sourcery CodeBench directly from the Windows command shell. You can also use Sourcery
CodeBench from within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cygwin\
home\user\hello.c. Because Sourcery CodeBench is not a Cygwin application, it does not,
by default, recognize Cygwin paths.

If you are using Sourcery CodeBench from Cygwin, you should set the CYGPATH environment
variable. If this environment variable is set, Sourcery CodeBench Lite automatically translates
Cygwin path names into Windows path names. To set this environment variable, type the following
command in a Cygwin shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery CodeBench relies on the cygpath utility provided with
Cygwin. You must provide Sourcery CodeBench with the full path to cygpath if cygpath is not
in your PATH. For example:

> export CYGPATH=c:/cygwin/bin/cygpath

9

Installation and Configuration

directs Sourcery CodeBench Lite to use c:/cygwin/bin/cygpath as the path conversion utility.
The value of CYGPATH must be an ordinary Windows path, not a Cygwin path.

2.6.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery CodeBench Lite using the graphical installer then you may skip this step.
The installer does this setup for you.

Before using Sourcery CodeBench Lite you should add it to your PATH. The command you must
use varies with the particular command shell that you are using. If you are using the C Shell (csh
or tcsh), use the command:

> setenv PATH installdir/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=installdir/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, replace installdir
with the full pathname of your Sourcery CodeBench Lite installation directory.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
CodeBench manual pages, which provide additional information about using Sourcery CodeBench.
To set the MANPATH environment variable, follow the same steps shown above, replacing PATH
with MANPATH, and bin with share/doc/sourceryg++-arm-none-symbianelf/man.

You can test that your PATH is set up correctly by running the following command:

> arm-none-symbianelf-g++ -v

Verify that the last line of the output contains: Sourcery CodeBench Lite 2012.03-42.

2.7. Uninstalling Sourcery CodeBench Lite
The method used to uninstall Sourcery CodeBench Lite depends on the method you originally used
to install it. If you have modified any files in the installation it is recommended that you back up
these changes. The uninstall procedure may remove the files you have altered. In particular, the
arm-none-symbianelf directory located in the install directory will be removed entirely by
the uninstaller.

2.7.1. Using the Sourcery CodeBench Lite Uninstaller on Microsoft
Windows

You should use the provided uninstaller to remove a Sourcery CodeBench Lite installation originally
created by the graphical installer. Start the graphical uninstaller by invoking the Uninstall executable
located in your installation directory, or use the uninstall shortcut created during installation. After
the uninstaller starts, follow the on-screen dialogs to uninstall Sourcery CodeBench Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery CodeBench Lite installation directory with the -i
console command-line option.

To uninstall third-party drivers bundled with Sourcery CodeBench Lite, first disconnect the associated
hardware device. Then use Uninstall a program (Vista and newer) or Add or Remove

10

Installation and Configuration

Programs (older versions of Windows) to remove the drivers separately. Depending on the device,
you may need to reboot your computer to complete the driver uninstall.

2.7.2. Using the Sourcery CodeBench Lite Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery CodeBench Lite installation originally
created by the executable installer script. Start the graphical uninstaller by invoking the executable
Uninstall shell script located in your installation directory. After the uninstaller starts, follow the on-
screen dialogs to uninstall Sourcery CodeBench Lite.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -i console command-line option.

2.7.3. Uninstalling a Compressed Archive Installation

If you installed Sourcery CodeBench Lite from a .tar.bz2 file, you can uninstall it by manually
deleting the installation directory created in the install procedure.

11

Installation and Configuration

Chapter 3
Sourcery CodeBench Lite for ARM
SymbianOS
This chapter contains information about features of Sourcery CodeBench Lite that are
specific to ARM SymbianOS targets.You should read this chapter to learn how to best use
Sourcery CodeBench Lite on your target system.

12

3.1. Included Components and Features
This section briefly lists the important components and features included in Sourcery CodeBench
Lite for ARM SymbianOS, and tells you where you may find further information about these features.

NotesVersionComponent

GNU programming tools

Separate manual included.4.6.3GNU Compiler Collection

Includes assembler, linker, and other utilities. Separate
manuals included.

2.21.53GNU Binary Utilities

Debugging support and simulators

Target libraries

Other utilities

Build support on Windows hosts.N/AGNU Make

Build support on Windows hosts.N/AGNU Core Utilities

3.2. Library Configurations
Sourcery CodeBench Lite for ARM SymbianOS includes the following library configuration.

ARMv5 - Little-Endian, Soft-Float

defaultCommand-line option(s):

ARMv5 - Little-Endian, VFP

-mfloat-abi=softfpCommand-line option(s):

Sourcery CodeBench includes copies of run-time libraries that have been built with optimizations
for different target architecture variants or other sets of build options. Each such set of libraries is
referred to as a multilib. When you link a target application, Sourcery CodeBench selects the multilib
matching the build options you have selected.

3.3. Building SymbianOS Programs
Building programs for SymbianOS requires you install additional software and follow the SymbianOS
build procedure.

You must install the Symbian SDK1. For Linux hosts, you must install the SDK on a Windows ma-
chine and then make the file system visible on your Linux host. Alternatively, for Linux hosts, the
GnuPoc2 project provides patches. Set the environment variable EPOCROOT to the directory containing
the epoc32 directory of your Symbian SDK installation, and also ensure your PATH variable includes
the $EPOCROOT/epoc32/tools directory. The following commands also make use of epoclib
and epocarch variables for convenience. For instance, if you have installed the SDK at /opt/
symbian-sdk, enter the following commands:

> export EPOCROOT=/opt/symbian-sdk/s60
> PATH=$EPOCROOT/epoc32/tools:$PATH

1 http://www.developer.nokia.com/Community/Wiki/How_do_I_start_programming_for_Symbian_OS%3F
2 http://gnupoc.sourceforge.net/

13

Sourcery CodeBench Lite for ARM SymbianOS

http://www.developer.nokia.com/Community/Wiki/How_do_I_start_programming_for_Symbian_OS%3F
http://gnupoc.sourceforge.net/
http://www.developer.nokia.com/Community/Wiki/How_do_I_start_programming_for_Symbian_OS%3F
http://gnupoc.sourceforge.net/

> epocinc=$EPOCROOT/epoc32/include
> epocarch=$EPOCROOT/epoc32/release/armv5

SymbianOS programs do not start at main, but at E32Main. Using an editor (such as notepad
on Microsoft Windows or vi on UNIX-like systems), create a file named main.cc containing the
following console program:

#include <e32base.h>
#include <e32cons.h>

_LIT (KTxtEPOC32EX, "EXAMPLES");
_LIT (KTxtExampleCode, "Symbian OS Example Code");
_LIT (KTxtOK, "ok [press any key]");

LOCAL_D CConsoleBase* console;

LOCAL_C int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

LOCAL_C void callExampleL () {
 console = Console::NewL
 (KTxtExampleCode,
 TSize (KConsFullScreen, KConsFullScreen));
 CleanupStack::PushL (console);

 _LIT (KHelloWorldText, "Hello world!\n");
 console->Printf (KHelloWorldText);
 for (int i = 0; i < 10; ++i) {
 int n = factorial (i);
 _LIT (KFactorialText, "factorial(%d) = %d\n");
 console->Printf (KFactorialText, i, n);
 }

 console->Printf (KTxtOK);
 console->Getch ();
 CleanupStack::PopAndDestroy ();
}

GLDEF_C TInt E32Main () {
 __UHEAP_MARK;
 CTrapCleanup *cleanup = CTrapCleanup::New ();
 TRAPD (error, callExampleL ());
 __ASSERT_ALWAYS (!error, User::Panic (KTxtEPOC32EX, error));
 delete cleanup;
 __UHEAP_MARKEND;
 return 0;
}

To compile a program in main.c use the following command:

14

Sourcery CodeBench Lite for ARM SymbianOS

> arm-none-symbianelf-g++ -march=armv5t -mthumb -mapcs -nostdinc \
 -D__MARM__ -D__MARM_ARMV5__ -D__MARM_THUMB__ \
 -D__MARM_INTERWORK__ -D__EABI__ -D__EXE__ \
 -D_DEBUG -D_UNICODE -D__SUPPORT_CPP_EXCEPTIONS__ \
 -D__GCCE__ -D__SYMBIAN32__ -D__EPOC32__ \
 -D__S60_50__ -D__S60_3X__ -D__SERIES60_3X__ \
 -D__PRODUCT_INCLUDE__=\"$epocinc/variant/symbian_os.hrh\" \
 -include $epocinc/gcce/gcce.h \
 -I $epocinc/libc -I $epocinc -I $epocinc/variant \
 -c -g -o main.o main.cc

You may see some warnings. These are from Symbian SDK header files, not Sourcery CodeBench
files.

You can link your application with:

> arm-none-symbianelf-g++ -march=armv5t -mthumb -mapcs -nostdlib \
 -Wl,--target1-abs -Wl,--no-undefined \
 -Wl,-Ttext,0x8000 -Wl,-Tdata,0x400000 \
 -Wl,--default-symver -Wl,-soname,"factorial{000a0000}.exe" \
 -Wl,--entry,_E32Startup -Wl,-u,_E32Startup \
 $epocarch/udeb/eexe.lib \
 -shared -g -o factorial.sym main.o \
 -Wl,"-(" -Wl,$epocarch/udeb/usrt2_2.lib \
 -Wl,$epocarch/udeb/ecrt0.lib -Wl,"-)" \
 -Wl,$epocarch/lib/estlib.dso \
 -Wl,$epocarch/lib/euser.dso \
 -Wl,$epocarch/lib/dfpaeabi.dso \
 -Wl,$epocarch/lib/dfprvct2_2.dso \
 -Wl,$epocarch/lib/drtaeabi.dso \
 -Wl,$epocarch/lib/scppnwdl.dso \
 -Wl,$epocarch/lib/drtrvct2_2.dso \
 -lsupc++ -lgcc -lgcc_eh

This produces a factorial.sym file that can be used by arm-none-symbianelf-gdb.

To run the program on SymbianOS, you must convert this file to EPOC32 format using the elf2e32
command. The elf2e32 command is part of the Symbian SDK and not part of Sourcery CodeBench.
If you are using a Linux host, and did not install GnuPoc, you must install Wine3 and invoke elf2e32
as:

> wine $EPOCROOT/epoc32/tools/elf2e32.exe other options

The following command creates factorial.exe:

> elf2e32 --sid=0x00000000 --version=10.0 --uid1=0x1000007a \
 --uid2=0xe8000075 --uid3=0x00000000 --vid=0x70000001 \
 --capability=none --fpu=softvfp --targettype=EXE \
 --output="factorial.exe" --elfinput="factorial.sym" \
 --linkas="factorial{000a0000}.exe" \
 --libpath="$epocarch/lib"

3 http://www.winehq.org/

15

Sourcery CodeBench Lite for ARM SymbianOS

http://www.winehq.org/
http://www.winehq.org/

3.4. SymbianOS Runtime Libraries
Sourcery CodeBench Lite does not include C or C++ runtime libraries for SymbianOS. These are
provided separately by Symbian.

3.5. NEON SIMD Code
Sourcery CodeBench includes support for automatic generation of NEON SIMD vector code.
Autovectorization is a compiler optimization in which loops involving normal integer or floating-
point code are transformed to use NEON SIMD instructions to process several data elements at once.

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mfpu=neon -mfloat-abi=softfp. The -mfpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery CodeBench also includes support for manual generation of NEON SIMD code using C
intrinsic functions. These intrinsics, the same as those supported by the ARM RealView® compiler,
are defined in the arm_neon.h header and are documented in the 'ARM NEON Intrinsics' section
of the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must
be specified to use these intrinsics; -ftree-vectorize is not required.

3.6. Fixed-Point Arithmetic
Sourcery CodeBench for ARM SymbianOS includes experimental support for fixed-point arithmetic
using a set of new data types, as described in the draft ISO/IEC technical report TR 18037. This
support is provided for all ARM targets, and uses specialized instructions where available, e.g. sat-
urating add and subtract operations on ARMv6T2 and above. Library functions are used for operations
which are not natively supported on the target architecture.

This feature is a GNU extension, so is only available when the selected language standard includes
GNU extensions (e.g. -std=gnu90, which is the default). Furthermore, only C is supported, not
C++.

TR 18037 leaves up to the implementation the sizes of various quantities within the new data types
it defines. For Sourcery CodeBench for ARM SymbianOS, these are, briefly:

• short _Fract: One sign bit, 7 fractional bits

• _Fract: One sign bit, 15 fractional bits

• long _Fract: One sign bit, 31 fractional bits

• unsigned short _Fract: 8 fractional bits

• unsigned _Fract: 16 fractional bits

• unsigned long _Fract: 32 fractional bits

• short _Accum: One sign bit, 7 fractional bits, 8 integral bits

• _Accum: One sign bit, 15 fractional bits, 16 integral bits

• long _Accum: One sign bit, 31 fractional bits, 32 integral bits

16

Sourcery CodeBench Lite for ARM SymbianOS

• unsigned short _Accum: 8 fractional bits, 8 integral bits

• unsigned _Accum: 16 fractional bits, 16 integral bits

• unsigned long _Accum: 32 fractional bits, 32 integral bits

These values (and various other useful constants) are also defined in the header file stdfix.h for
use in your programs. Note that there is currently no support for the new standard-library functions
described in TR 18037, nor for the pragmas controlling precision of operations.

Fixed-point extensions are not currently supported by GDB, nor are they compliant with the ARM
EABI (which does not specify anything about fixed-point types at present). Code using fixed-point
types cannot be expected to interact properly (across ABI boundaries) with code generated by other
compilers for the ARM architecture.

3.7. Half-Precision Floating Point
Sourcery CodeBench for ARM SymbianOS includes support for half-precision (16-bit) floating
point, including the new __fp16 data type in C and C++, support for generating conversion instruc-
tions when compiling for processors that support them, and library functions for use in other cases.

To use half-precision floating point, you must explicitly enable it via the -mfp16-format command-
line option to the compiler. For more information about __fp16 representations and usage from C
and C++, refer to the GCC manual.

3.8. ABI Compatibility
The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery CodeBench and ARM RealView®.

Sourcery CodeBench implements the ABI as described in these documents, which are available from
the ARM Information Center4:

• BSABI - ARM IHI 0036B (28 October 2009)

• BPABI - ARM IHI 0037B (28 October 2009)

• EHABI - ARM IHI 0038A (28 October 2009)

• CLIBABI - ARM IHI 0039B (4 November 2009)

• AADWARF - ARM IHI 0040A (28 October 2009)

• CPPABI - ARM IHI 0041C (5 October 2009)

• AAPCS - ARM IHI 0042D (16 October 2009)

• RTABI - ARM IHI 0043C (19 October 2009)

• AAELF - ARM IHI 0044D (28 October 2009)

• ABI Addenda - ARM IHI 0045C (4 November 2009)

4 http://infocenter.arm.com

17

Sourcery CodeBench Lite for ARM SymbianOS

http://infocenter.arm.com
http://infocenter.arm.com

Sourcery CodeBench currently produces DWARF version 2, rather than DWARF version 3 as spe-
cified in AADWARF.

18

Sourcery CodeBench Lite for ARM SymbianOS

Chapter 4
Using Sourcery CodeBench from
the Command Line
This chapter demonstrates the use of Sourcery CodeBench Lite from the command line.

19

4.1. Building an Application
This chapter explains how to build an application with Sourcery CodeBench Lite using the command
line. As elsewhere in this manual, this section assumes that your target system is arm-none-symbianelf,
as indicated by the arm-none-symbianelf command prefix.

Building programs for SymbianOS requires unique command-line arguments and build steps to in-
tegrate with the Symbian SDK; refer to Chapter 3, “Sourcery CodeBench Lite for ARM SymbianOS”
for details.

4.2. Running Applications on the Target System
Consult your target board documentation for instructions on loading programs onto the target, and
running them.

20

Using Sourcery CodeBench from the Command Line

Chapter 5
Next Steps with Sourcery
CodeBench
This chapter describes where you can find additional documentation and information about
using Sourcery CodeBench Lite and its components.

21

5.1. Sourcery CodeBench Knowledge Base
The Sourcery CodeBench Knowledge Base is available to registered users at the Sourcery CodeBench
Portal1. Here you can find solutions to common problems including installing Sourcery CodeBench,
making it work with specific targets, and interoperability with third-party libraries. There are also
additional example programs and tips for making the most effective use of the toolchain and for
solving problems commonly encountered during debugging. The Knowledge Base is updated fre-
quently with additional entries based on inquiries and feedback from customers.

5.2. Example Programs
Sourcery CodeBench Lite includes some bundled example programs. You can find the source code
for these examples in the share/sourceryg++-arm-none-symbianelf-examples dir-
ectory of your Sourcery CodeBench installation.

5.2.1. Other Examples

The subdirectories contain a number of small, target-independent test programs. You may find these
programs useful as self-contained test cases when experimenting with configuring the correct compiler
and debugger settings for your target, or when learning how to use the debugger or other features of
the Sourcery CodeBench toolchain.

5.3. Manuals for GNU Toolchain Components
Sourcery CodeBench Lite includes the full user manuals for each of the GNU toolchain components,
such as the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material
for new users as well as serving as a complete reference for command-line options, supported exten-
sions, and the like.

When you install Sourcery CodeBench Lite, links to both the PDF and HTML versions of the
manuals are created in the shortcuts folder you select. If you elected not to create shortcuts when
installing Sourcery CodeBench Lite, the documentation can be found in the share/doc/
sourceryg++-arm-none-symbianelf/ subdirectory of your installation directory.

In addition to the detailed reference manuals, Sourcery CodeBench Lite includes a Unix-style
manual page for each toolchain component. You can view these by invoking the man command with
the pathname of the file you want to view. For example, you can first go to the directory containing
the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-none-symbianelf/man/man1

Then you can invoke man as:

> man ./arm-none-symbianelf-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery CodeBench man pages to your MANPATH environment variable. This should
go in your .profile or equivalent shell startup file; see Section 2.6, “Setting up the Environment”
for instructions. Then you can invoke man with just the command name rather than a pathname.

1 https://sourcery.mentor.com/GNUToolchain/

22

Next Steps with Sourcery CodeBench

https://sourcery.mentor.com/GNUToolchain/
https://sourcery.mentor.com/GNUToolchain/
https://sourcery.mentor.com/GNUToolchain/

Finally, note that every command-line utility program included with Sourcery CodeBench Lite can
be invoked with a --help option. This prints a brief description of the arguments and options to
the program and exits without doing further processing.

23

Next Steps with Sourcery CodeBench

Appendix A
Sourcery CodeBench Lite Release
Notes
This appendix contains information about changes in this release of Sourcery CodeBench
Lite for ARM SymbianOS.You should read through these notes to learn about new features
and bug fixes.

24

A.1. Changes in Sourcery CodeBench Lite for
ARM SymbianOS
This section documents Sourcery CodeBench Lite changes for each released revision.

A.1.1. Changes in Sourcery CodeBench Lite 2012.03-42

Nondeterministic code generation bug fix. A GCC bug has been fixed that caused nondetermin-
istic code generation for some input files when optimizing.

Installer failure during upgrade. Some recent releases were affected by an installer bug on
Windows hosts that caused installing a newer version of Sourcery CodeBench Lite into the same
directory to fail with the error Sourcery CodeBench Lite for ARM SymbianOS upgrade
failed. This bug has now been fixed, but the affected releases cannot be upgraded. As a workaround,
uninstall the older release before installing the new version.

A.1.2. Changes in Sourcery CodeBench Lite 2012.03-24

New Sourcery CodeBench Lite branding. Sourcery G++ has been renamed to Sourcery
CodeBench. This change affects the names of the default installation directory and installer-created
shortcuts, but no internal pathnames or tool names within the installation directory have been changed.

Fix for internal compiler error. A bug that caused GCC to report an internal compiler error in
push_minipool_fix has been fixed.

Internal compiler error with NEON intrinsics. A compiler bug has been fixed that caused in-
ternal compiler errors when using certain NEON intrinsics.

Fix for compiler hang. A bug that caused GCC to become stuck in an infinite loop in the optimizer
has been fixed.

Internal compiler error. A GCC bug has been fixed that caused an internal compiler error when
sign extending the result of an array subscript expression with an index greater than 255.

GCC version 4.6. Sourcery CodeBench Lite for ARM SymbianOS is now based on GCC version
4.6. For more information about changes from GCC version 4.5 that was included in previous releases,
see http://gcc.gnu.org/gcc-4.6/changes.html.

Fix for internal compiler error. A GCC bug has been fixed that caused an internal compiler
error when using pointer casts in C++0x constexpr initialization expressions.

ARM VFP9-S errata workaround. A compiler workaround for ARM Errata Notice GENC-
010704 (760019: Canceled FDIV or FSQRT can be executed twice) has been implemented.

Fix for bit-field optimization bug. A compiler bug that caused incorrect code to be generated
for programs using bit-fields has been fixed.

Additional library required on link command line. Due to internal changes in GCC's support
library configuration, you must now include -lgcc_eh on the link command line for SymbianOS
applications to avoid undefined symbol errors for exception handling support functions.

GCC version 4.6.3. Sourcery CodeBench Lite for ARM SymbianOS is now based on GCC version
4.6.3. For more information about issues that have been fixed since version 4.6.1, see
http://gcc.gnu.org/gcc-4.6/changes.html.

25

Sourcery CodeBench Lite Release Notes

Map file name demangling bug fix. GCC now properly passes the --demangle and
--no-demangle options to the linker to control map file output. The default behavior on all hosts
is now to demangle C++ names.

GCC stack usage improvement. GCC now generates better code for stack allocation in some
cases when compiling with -fno-strict-aliasing.

ARM miscompilation fix. A bug has been fixed that caused miscompilation of some expressions
involving the minimum or maximum idiom, such as (a > 0) ? a : 0.

Linker --gc-sections option bug fix. A bug has been fixed that caused the linker to incor-
rectly remove the .debug_types section when using the --gc-sections option.

Binutils version 2.21. Sourcery CodeBench Lite for ARM SymbianOS is now based on binutils
version 2.21.

Assembler crash. The assembler now warns when there is line information for the *ABS* section,
rather than crash. This can occur when the .offset directive is used incorrectly.

Changes to host operating system requirements. The minimum required Microsoft Windows
OS needed to run Sourcery CodeBench Lite is now Windows XP (SP1).

A.1.3. Changes in Sourcery G++ Lite 2011.03-45

Variable Length Array (VLA) alignment bug. A compiler bug that resulted in incorrectly
aligned variable length arrays (VLA) in leaf functions has been fixed.

Cortex-R5 support. Sourcery G++ now includes support for ARM Cortex-R5 processors. To
compile for these processors, use -mcpu=cortex-r5.

Inline assembly and volatile fields. A bug has been fixed that caused the compiler to incorrectly
reject inline asm statements referring to volatile class/struct fields with errors such as error:
output number 1 not directly addressable.

Incorrect C++ warning fixed. A bug in GCC has been fixed that caused spurious warnings about
lambda expressions in C++ code that does not use them.

Fixed-point arithmetic support. Experimental compiler support has been added for fixed-point
arithmetic on ARM, as described in the draft ISO/IEC technical report TR 18037. Specialized instruc-
tions defined in recent architecture versions for performing saturating arithmetic, etc. are used when
available, but are not a prerequisite for using the new language features. See Section 3.6, “Fixed-
Point Arithmetic” for further details.

C++ constructor bug fix. A compiler bug has been fixed that caused incorrect code for C++
constructors for some class hierarchies that use virtual inheritance and include empty classes. At
runtime, the incorrect constructors resulted in memory corruption or other errors.

Thumb debug information fix. A compiler bug that resulted in incorrect debug information for
Thumb code has been fixed. The incorrect information prevented single stepping through some code.

Internal compiler error with pointer casting. A compiler bug has been fixed that caused internal
compiler errors when accessing double-word memory locations with casted pointers under ARM
mode.

Unaligned access support. The compiler now generates more efficient code for accessing packed
data structures and for copying small blocks of unaligned data when targeting architectures that

26

Sourcery CodeBench Lite Release Notes

permit unaligned word/halfword accesses. This feature can be controlled by the
-munaligned-access and -mno-unaligned-access options, and is enabled by default
for ARMv6 processors and above, except for ARMv6-M.

Internal compiler error under Thumb mode. A compiler bug has been fixed that caused internal
compiler errors when generating Thumb code.

A.1.4. Changes in Sourcery G++ Lite 2011.03-8

Incorrect code for built-in comparison functions. A bug has been fixed that sometimes caused
GCC's built-in comparison functions, such as __builtin_isgreaterequal, to incorrectly
raise exceptions when invoked on unordered floating-point arguments.

GCC fixes for -fstrict-volatile-bitfields. GCC now honors
-fstrict-volatile-bitfields when a bitfield is not declared volatile initially, but an object
including bit fields is cast to volatile. Also, a bug was fixed that caused incorrect code to be generated
for some stores to volatile bit fields when -fstrict-volatile-bitfields is enabled.

Compiler optimization improvements. The compiler has been enhanced with a number of op-
timization improvements, including:

• Smaller and faster code for compound conditionals.

• Removal of superfluous sign and zero extensions.

• Improved code for multiply-and-accumulate operations on ARM.

Internal compiler error with NEON intrinsics. A compiler bug has been fixed that caused in-
ternal compiler errors when using certain NEON intrinsics.

GCC version 4.5.2. Sourcery G++ Lite for ARM SymbianOS is now based on GCC version
4.5.2.

GCC code generation bug for casts to volatile types. A compiler bug has been fixed that
sometimes caused incorrect code for references to pointers to types with volatile casts.

Incorrect optimization fix. An optimizer bug that in rare cases caused incorrect code to be gen-
erated for complex AND and OR expressions containing redundant subexpressions has been fixed.

GCC fixes for NEON in big-endian mode. Several compiler bugs have been fixed that could
lead to incorrect code when using NEON in big-endian mode. The problems only manifested when
using the auto-vectorizer (enabled by default at the -O3 optimization level) with the
-mvectorize-with-neon-quad option.

C++ exception handling. A defect in the implementation of the EH-ABI specification has been
fixed. The defect affected the catching of pointer types in code generated by the ARM RealView®
compiler but using the Sourcery G++ runtime libraries. The fix also retains backward compatibility
with existing GCC-compiled code.

GCC bug where accesses to volatile structure fields are optimized away. A bug has been
fixed where accesses to volatile fields of a structure were sometimes incorrectly optimized away if
the structure instance was defined as non-volatile.

Internal compiler error fixes. Two bugs have been fixed that caused compiler crashes in rare
cases. The first bug involved code with multiple comparison operations, and the second one involved
char to int conversion.

27

Sourcery CodeBench Lite Release Notes

Thumb-2 assembler validation fix. The assembler now correctly rejects Thumb-2 ADD, ADDS,
SUB, and SUBS instructions that have an invalid shift operand. Previously, invalid shift values were
accepted and generated unpredictable instructions.

Objdump fix for multiple input files. The Objdump utility did not produce correct disassembly
when processing multiple input files. This has been fixed.

A.1.5. Changes in Sourcery G++ Lite 2010.09-54

GCC fix for duplicated symbols. A GCC optimizer bug that caused multiple definitions of local
symbols has been fixed. Code affected by the bug was rejected by the assembler.

NEON code generation fix. A GCC bug has been fixed that resulted in an assembler error VFP/
Neon double precision register expected.

Static data size improvement at -Os. When optimizing for size, the compiler no longer implicitly
adds padding bytes to align static and local arrays on word boundaries. This fixes static data size
regressions introduced since GCC 4.4. The additional alignment is still used when optimizing for
speed.

New -fstrict-volatile-bitfields option. The compiler has a new option,
-fstrict-volatile-bitfields, which forces access to a volatile structure member using
the width that conforms to its type. This option is enabled by default to conform to the ARM EABI.
Refer to the GCC manual for details.

Internal compiler error fixes. A bug has been fixed that caused the compiler to crash on code
containing a typedef alias for __builtin_va_list with option
-femit-struct-debug-baseonly. A second bug has been fixed that caused a crash when
compiling code using C99 variable-length arrays. Additionally, a compiler crash on code using 64-
bit integer multiplications with NEON vectorization enabled has also been fixed.

NEON narrowing-move instructions. The compiler now supports narrowing-move instructions
when auto-vectorizing for NEON. Loops accessing arrays of char or short values are now more
likely to be vectorized.

Improved support for atomic memory builtins. The compiler support for built-in atomic
memory access operations on ARMv7 targets has been improved. These builtins are documented in
the GCC manual.

Linker debug information fix. A bug in linker processing of debug information has been fixed.
The bug sometimes prevented the Sourcery G++ debugger from displaying source code if the execut-
able was linked with the --gc-sections option.

Absolute branch bug fixes. A bug that caused the assembler to crash on a branch to an absolute
address has been fixed. Linker handling of the resulting relocations has also been improved. Previously
this caused an invalid switch to ARM mode on ARMv7-M devices.

VMOV instruction bug fix. A bug that caused the assembler to incorrectly reject certain valid
immediate operands for the VMOV instruction has been fixed.

A.1.6. Changes in Sourcery G++ Lite 2010.09-20

Changes to Sourcery G++ version numbering. Sourcery G++ product and Lite toolchains now
uniformly use a version numbering scheme of the form 2012.03-42. The major and minor parts of
the version number, in this case 2012.03, identify the release branch, while the final component is

28

Sourcery CodeBench Lite Release Notes

a build number within the branch. There are also new preprocessor macros defined by the compiler
for the version number components so that you may conditionalize code for Sourcery G++ or partic-
ular Sourcery G++ versions. Details are available in the Sourcery G++ Knowledge Base1.

GCC fix for reference to undefined label. A bug in the optimizer that caused GCC to emit ref-
erences to undefined labels has been fixed.

Precision improvement with vectorization enabled. The GCC auto-vectorizer no longer uses
NEON floating-point instructions unless the -funsafe-math-optimizations option (implied
by -ffast-math) is specified. This is because NEON hardware does not fully support the IEEE
754 standard for floating-point arithmetic. In particular, very small quantities may be flushed to zero.

Alignment attributes. A bug has been fixed that caused the compiler to ignore alignment attributes
of C++ static member variables where the attribute was present on the definition, but not the declar-
ation.

naked attribute semantics. The naked function attribute now also implies the noinline
and noclone attributes. This fixes bugs resulting from invalid optimizations of functions with this
attribute.

Stack corruption bug fix. A bug in GCC has been fixed that caused stack corruption in functions
with the interrupt attribute.

GCC bug fix for push multiple instruction generation. A bug has been fixed that caused GCC
to generate incorrect push multiple instructions, causing an assembler warning register range
not in ascending order.

Thumb-2 internal compiler error fix. A bug has been fixed that caused the compiler to crash
when compiling Thumb-2 code using 64-bit integer arithmetic.

Compiler optimization improvements. The compiler has been enhanced with a number of op-
timization improvements, including:

• More efficient assignment for structures containing bitfields.

• Better code for initializing C++ arrays with explicit element initializers.

• Improved logic for eliminating/combining redundant comparisons in code with nested conditionals.

• Better selection of loop variables, resulting in fewer temporaries and more efficient register usage.

• More optimization of references to globals in position-independent code.

• Various Thumb code generation improvements.

• Better code when constant addresses are used as arguments to inline assembly statements.

• Better code for copying small constant strings.

• Improved tuning for Cortex-M4 processors.

• Cortex-A9 specific tuning for VFP and NEON instructions.

• Use of more NEON features.

1 https://support.codesourcery.com/GNUToolchain/kbentry1

29

Sourcery CodeBench Lite Release Notes

https://support.codesourcery.com/GNUToolchain/kbentry1
https://support.codesourcery.com/GNUToolchain/kbentry1

Preprocessor symbols for floating-point calling convention. Built-in preprocessor symbols
__ARM_PCS and __ARM_PCS_VFP are now defined to indicate the current floating-point calling
convention.

GCC version 4.5.1. Sourcery G++ Lite for ARM SymbianOS is now based on GCC version
4.5.1. For more information about changes from GCC version 4.4 that was included in previous re-
leases, see http://gcc.gnu.org/gcc-4.5/changes.html.

New -Wdouble-promotion warning option. The compiler has a new option,
-Wdouble-promotion, which enables warnings about implicit promotions of float values to
double. This option is useful when compiling code for processors (such as ARM Cortex-M4) that
have hardware support for single-precision floating-point arithmetic only, where unintentional use
of double precision results in dramatically slower code.

C++ runtime symbol visibility. A bug has been fixed that caused some symbols in the C++
runtime library (libsupc++.a) to have incorrect visibility attributes.

Linker bug fix. A bug that caused the linker error relocation truncated to fit:
R_ARM_THM_JUMP24 when linking some Thumb-2 applications has been fixed.

Assembler PC-relative store fix. A bug that caused the assembler to reject some valid PC-relative
store instructions has been fixed. It now issues a warning instead for architectures where these in-
structions are deprecated.

ARMv7-A linker bug fix. A bug in the linker support for --fix-cortex-a8, which is enabled
by default when linking ARMv7-A objects, has been fixed. Programs affected by the bug sometimes
crashed with segmentation fault or illegal instruction errors.

Smaller C++ programs with -g. An assembler bug has been fixed that caused unnecessary
references to exception-handling routines from C++ programs when debug information is enabled.
For programs that do not otherwise use exceptions, this change results in smaller code size.

Additional validation in the assembler. The assembler now diagnoses an error, instead of pro-
ducing an invalid object file, when directives such as .hidden are missing operands.

Assembler PC-relative load fix. An assembler bug that caused the assembler to reject some
references to global symbols has been fixed. This bug affected Thumb instructions of the form ldr
r0, symbol.

Strip bug fix. A bug in the strip and objcopy utilities, which resulted in stripped object files
that the linker could not recognize, has been fixed.

Binutils update. The binutils package has been updated to version 2.20.51.20100809 from the
FSF trunk. This update includes numerous bug fixes.

A.1.7. Changes in Older Releases

For information about changes in older releases of Sourcery G++ Lite for ARM SymbianOS, please
refer to the Getting Started guide packaged with those releases.

30

Sourcery CodeBench Lite Release Notes

Appendix B
Sourcery CodeBench Lite
Licenses
Sourcery CodeBench Lite contains software provided under a variety of licenses. Some
components are “free” or “open source” software, while other components are proprietary.
This appendix explains what licenses apply to your use of Sourcery CodeBench Lite. You
should read this appendix to understand your legal rights and obligations as a user of
Sourcery CodeBench Lite.

31

B.1. Licenses for Sourcery CodeBench Lite
Components
The table below lists the major components of Sourcery CodeBench Lite for ARM SymbianOS and
the license terms which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery CodeBench Lite. Sourcery
CodeBench Lite may contain free or open-source components not included in the list below; for a
definitive list, consult the source package corresponding to this release of Sourcery CodeBench Lite.

LicenseComponent

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Compiler Collection

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Binary Utilities

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Make

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Core Utilities

The CodeSourcery License is available in Section B.2, “Sourcery CodeBench Software License
Agreement”.

Important

Although some of the licenses that apply to Sourcery CodeBench Lite are “free software”
or “open source software” licenses, none of these licenses impose any obligation on you to
reveal the source code of applications you build with Sourcery CodeBench Lite. You can
develop proprietary applications and libraries with Sourcery CodeBench Lite.

Sourcery CodeBench Lite may include some third party example programs and libraries in the
share/sourceryg++-arm-none-symbianelf-examples subdirectory. These examples
are not covered by the Sourcery CodeBench Software License Agreement. To the extent permitted
by law, these examples are provided by CodeSourcery as is with no warranty of any kind, including
implied warranties of merchantability or fitness for a particular purpose. Your use of each example
is governed by the license notice (if any) it contains.

B.2. Sourcery CodeBench™ Software License
Agreement
1. Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and

Mentor Graphics. If You are not acting on behalf of Yourself as an individual, then “You”
means Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery CodeBench™ Lite Edition (the “Software”).

3. Definitions.

32

Sourcery CodeBench Lite Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Mentor Graphics Proprietary Components. The components of the Software that
are owned and/or licensed by Mentor Graphics and are not subject to a “free software”

3.1.

or “open source” license, such as the GNU Public License. The Mentor Graphics Propri-
etary Components of the Software include, without limitation, the Sourcery CodeBench
Installer, any Sourcery CodeBench Eclipse plug-ins, the CodeSourcery C Library
(CSLIBC), and any Sourcery CodeBench Debug Sprite. For a complete list, refer to the
Getting Started Guide included with the distribution.

3.2. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.3. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.4. Redistributable Components. The Mentor Graphics Proprietary Components that
are intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,
CSLIBC and the CodeSourcery Common Startup Code Sequence (CS3). For a complete
list, refer to the Getting Started Guide included with the distribution.

4. License Grant to Proprietary Components of the Software. You are granted a non-exclus-
ive, royalty-free license (a) to install and use the Mentor Graphics Proprietary Components of
the Software, (b) to transmit the Mentor Graphics Proprietary Components over an internal
computer network, (c) to copy the Mentor Graphics Proprietary Components for Your internal
use only, and (d) to distribute the Redistributable Component(s) in binary form only and only
as part of Licensee object code developed with the Software that provides substantially different
functionality than the Redistributable Component(s).

5. Restrictions. You may not: (i) copy or permit others to use the Mentor Graphics Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the Mentor
Graphics Proprietary Components of the Software to any third party, except as expressly provided
above; or (iii) reverse engineer, decompile, or disassemble the Mentor Graphics Proprietary
Components of the Software, except to the extent this restriction is expressly prohibited by ap-
plicable law.

6. “Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by Mentor Graphics. Sourcery
CodeBench includes components provided under various different licenses. The Getting Started
Guide provides an overview of which license applies to different components, and, for compon-
ents subject to the Eclipse Public License, contains information on how to obtain the source
code. Definitive licensing information for each “free software” or “open source” component is
available in the relevant source file.

7. Mentor Graphics Trademarks. Notwithstanding any provision in a “free software” or
“open source” license agreement applicable to a component of the Software that permits You
to distribute such component to a third party in source or binary form, You may not use any
Mentor Graphics trademark, whether registered or unregistered, including without limitation,
CodeSourcery™, Sourcery CodeBench™, the CodeSourcery crystal ball logo, or the Sourcery
CodeBench splash screen, or any confusingly similar mark, in connection with such distribution,
and You may not recompile the Open Source Software Components with the
--with-pkgversion or --with-bugurl configuration options that embed Mentor
Graphics trademarks in the resulting binary.

33

Sourcery CodeBench Lite Licenses

8. Term and Termination. This Agreement shall remain in effect unless terminated pursuant
to this provision. Mentor Graphics may terminate this Agreement upon seven (7) days written
notice of a material breach of this Agreement if such breach is not cured; provided that the un-
authorized use, copying, or distribution of the Mentor Graphics Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

9. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of Mentor Graphics, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

10. Ownership. Mentor Graphics owns and/or has licensed the Mentor Graphics Proprietary
Components of the Software and all intellectual property rights embodied therein, including
copyrights and valuable trade secrets embodied in its design and coding methodology. The
Mentor Graphics Proprietary Components of the Software are protected by United States
copyright laws and international treaty provisions. Mentor Graphics also owns all rights, title
and interest in and with respect to its trade names, domain names, trade dress, logos, trademarks,
service marks, and other similar rights or interests in intellectual property. This Agreement
provides You only a limited use license, and no ownership of any intellectual property.

11. Warranty Disclaimer; Limitation of Liability. MENTOR GRAPHICS AND ITS LI-
CENSORS PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS.
MENTOR GRAPHICS DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED. MENTOR GRAPHICS SPECIFICALLY DISCLAIMS THE IMPLIED WAR-
RANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE
IS NO WARRANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE
WILL BE UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFT-
WARE WILL MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY,
ACCURACY, PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION,
INSTALLATION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY
CONSTITUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE
SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

12. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

13. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL MENTOR GRAPHICS
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-
ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
MENTOR GRAPHICS' LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE
WHATSOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE
AMOUNT PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS
ONE YEAR PERIOD.

14. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software

34

Sourcery CodeBench Lite Licenses

or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

15. U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

16. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

17. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

18. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted
by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of
Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

19. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

35

Sourcery CodeBench Lite Licenses

20. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of Mentor Graphics and shall not have the power or authority
to bind or obligate Mentor Graphics in any manner to any third party.

21. Force Majeure. Neither Mentor Graphics nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

22. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

B.3. Attribution
This version of Sourcery CodeBench Lite may include code based on work under the following
copyright and permission notices:

B.3.1. Android Open Source Project

/*
 * Copyright (C) 2008 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

36

Sourcery CodeBench Lite Licenses

	Sourcery CodeBench Lite
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Building Your Program
	1.3. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Downloading an Installer
	2.4. Installing Sourcery CodeBench Lite
	2.4.1. Using the Sourcery CodeBench Lite Installer on Microsoft Windows
	2.4.2. Using the Sourcery CodeBench Lite Installer on GNU/Linux Hosts
	2.4.3. Installing Sourcery CodeBench Lite from a Compressed Archive

	2.5. Installing Sourcery CodeBench Lite Updates
	2.6. Setting up the Environment
	2.6.1. Setting up the Environment on Microsoft Windows Hosts
	2.6.1.1. Setting the PATH
	2.6.1.2. Working with Cygwin

	2.6.2. Setting up the Environment on GNU/Linux Hosts

	2.7. Uninstalling Sourcery CodeBench Lite
	2.7.1. Using the Sourcery CodeBench Lite Uninstaller on Microsoft Windows
	2.7.2. Using the Sourcery CodeBench Lite Uninstaller on GNU/Linux
	2.7.3. Uninstalling a Compressed Archive Installation

	Chapter 3 Sourcery CodeBench Lite for ARM SymbianOS
	3.1. Included Components and Features
	3.2. Library Configurations
	3.3. Building SymbianOS Programs
	3.4. SymbianOS Runtime Libraries
	3.5. NEON SIMD Code
	3.6. Fixed-Point Arithmetic
	3.7. Half-Precision Floating Point
	3.8. ABI Compatibility

	Chapter 4 Using Sourcery CodeBench from the Command Line
	4.1. Building an Application
	4.2. Running Applications on the Target System

	Chapter 5 Next Steps with Sourcery CodeBench
	5.1. Sourcery CodeBench Knowledge Base
	5.2. Example Programs
	5.2.1. Other Examples

	5.3. Manuals for GNU Toolchain Components

	Appendix A Sourcery CodeBench Lite Release Notes
	A.1. Changes in Sourcery CodeBench Lite for ARM SymbianOS
	A.1.1. Changes in Sourcery CodeBench Lite 2012.03-42
	A.1.2. Changes in Sourcery CodeBench Lite 2012.03-24
	A.1.3. Changes in Sourcery G++ Lite 2011.03-45
	A.1.4. Changes in Sourcery G++ Lite 2011.03-8
	A.1.5. Changes in Sourcery G++ Lite 2010.09-54
	A.1.6. Changes in Sourcery G++ Lite 2010.09-20
	A.1.7. Changes in Older Releases

	Appendix B Sourcery CodeBench Lite Licenses
	B.1. Licenses for Sourcery CodeBench Lite Components
	B.2. Sourcery CodeBench Software License Agreement
	B.3. Attribution
	B.3.1. Android Open Source Project

